Skip to content

A generic ROS wrapper for OpenVINO, support CPU, GPU and Myriad (Neural Compute Stick 2) platforms. Support latest OpenVINO R3 version, step by step instruction is included too!

License

Notifications You must be signed in to change notification settings

wavelu/ros_vino

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ROS OpenVINO Package (ros_vino)

A generic ROS wrapper for OpenVINO, providing the following features:

  • Support CPU, GPU and Myriad (Neural Compute Stick 2) platforms.
  • Real-time SSD Object Detection
  • Real-time Bounding Box Tracking
  • More to come!

This package works perfectly with OpenVINO 2019 R3 Release (Newest Release as of Oct 2019).

1. Results

MobileNet SSD Object Detection (Bottom): 30 FPS

Multi Object Tracking (Upper): 30 FPS

multi_kf_track

2. Nodes

  • object_detection_ssd: A Real-time SSD Object Detection using OpenVINO

    • Subscribe:

      • A standard image topic of sensor_msgs::Image, it can be from any USB camera or Realsense camera.
    • Publish:

      • A new image topic of sensor_msgs::Image with bounding boxes

      • A list of detected object topic of ros_vino::Objects

  • multi_kf_tracker: A Real-time Multi Tracker using Kalman Filter and Hungarian Algorithm

    • Subscribe:
      • A standard image topic of sensor_msgs::Image, it can be from any USB camera or Realsense camera.
      • A list of detected object topic of ros_vino::Objects
    • Publish:
      • A new image topic of sensor_msgs::Image with tracked bounding boxes
      • A list of tracked object topic of ros_vino::Objects

3. Pre-requisites

  1. Ubuntu 16.04/18.04
  2. OpenVINO 2019 R3
  3. ROS Kinetic / Melodic

4. Installation

This installation is only properly tested on Ubuntu 16.04, ROS Kinetic and OpenVINO 2019 R3.

4.1 Install OpenVINO

  1. Download OpenVINO from here.

  2. Install dependencies and OpenVINO.

    cd ~/Download
    tar xvf l_openvino_toolkit_<VERSION>.tgz
    cd l_openvino_toolkit_<VERSION>
    sudo -E ./install_openvino_dependencies.sh
    sudo -E ./install_GUI.sh
  3. In the GUI, make sure the installation directory is set to /opt/intel by default.

  4. Source OpenVINO environment variables.

    echo "source /opt/intel/openvino/bin/setupvars.sh" >> ~/.bashrc
    source ~/.bashrc
  5. Optional. Setup Myriad for Neural Compute Stick 2.

    cd ~/Downloads
    cat <<EOF > 97-usbboot.rules
    SUBSYSTEM=="usb", ATTRS{idProduct}=="2150", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
    SUBSYSTEM=="usb", ATTRS{idProduct}=="2485", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
    SUBSYSTEM=="usb", ATTRS{idProduct}=="f63b", ATTRS{idVendor}=="03e7", GROUP="users", MODE="0666", ENV{ID_MM_DEVICE_IGNORE}="1"
    EOF
    sudo cp 97-usbboot.rules /etc/udev/rules.d/
    sudo udevadm control --reload-rules
    sudo udevadm trigger
    sudo ldconfig
    rm 97-usbboot.rules
  6. Optional. Install librealsense for Realsense Depth Camera D415/D435/D435i. Then install realsense-ros.

    sudo apt-key adv --keyserver keys.gnupg.net --recv-key C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-key C8B3A55A6F3EFCDE
    sudo add-apt-repository "deb http://realsense-hw-public.s3.amazonaws.com/Debian/apt-repo xenial main" -u
    sudo apt-get install librealsense2-dkms
    sudo apt-get install librealsense2-utils
    sudo apt-get install librealsense2-dev
    sudo apt-get install librealsense2-dbg
    
    cd ~/catkin_ws/src
    git clone https://github.com/intel-ros/realsense
    cd realsense
    git checkout 2.1.3

4.2 Install ros_vino

  1. Clone this package into your workspace, assuming ~/catkin_ws as your ROS workspace:

    cd ~/catkin_ws/src
    git clone http://github.com/songshan/ros_vino
  2. Compile!

    cd ~/catkin_ws
    catkin_make

Object Detection SSD Demo

  • Launch object detection demo with Intel Realsense:

    roslaunch ros_vino object_detection_ssd_realsense.launch
  • Launch object detection demo with other camera:

    roslaunch ros_vino object_detection_ssd.launch

Parameters

  • model_path - Optional. Path to an .xml file with a trained model.
  • topic_image_input - Optional. The topic name of input images.
  • topic_image_output - Optional. The topic name of output images which contains bounding boxes.
  • score_threshold - Optional. The minimum detection score to be considered as a detection. Default is 0.8.
  • device - Optional. Specify the target device to infer on. Available choices are [CPU / GPU / MYRIAD]. Default is CPU.
  • bool_auto_resize - Optional. Enables resizable input with support of ROI crop & auto resize. Default is true.
  • bool_pc - Optional. Enables per-layer performance report. Default is false.
  • bool_raw - Optional. Inference results as raw values. Default is false.

Detection + Multi Tracker

  • Launch object tracker demo with Intel Realsense and object detection:

    roslaunch ros_vino detection_track_demo.launch

Parameters

  • topic_image_input - Optional. The topic name of input images.

  • topic_objects_input - Optional. The topic name of detected objects.

  • topic_image_output - Optional. The topic name of output images which contains tracked bounding boxes.

  • topic_objects_output - Optional. The topic name of tracked objects.

  • min_correspondence_cost - Optional. The minimum correspondence cost to be considered as a new untracked detection. Default is 100.

  • p_sampling_time - Optional. The output rate of object detection. Default is 30.0.

  • p_loop_rate - Optional. The desired update rate of output image and objects. Default is 30.0.

  • p_tracking_duration - Optional. The number of seconds to keep the tracked without a matched detection. Default is 0.5.

  • p_process_variance - Optional. The process variance of Kalman filter. Default is 1.0.

  • p_process_rate_variance - Optional. The process rate variance of Kalman filter. Default is 10.0.

  • p_measurement_variance - Optional. The detection variance for Kalman filter. Default is 10000.0.

Download your own model:

  1. Download model through downloader:

    # Download Mobilenet-SSD Model using downloader
    cd /opt/intel/openvino/deployment_tools/open_model_zoo/tools/downloader
    sudo python3 ./downloader.py --name [MODEL_NAME]
    # Copy the downloaded model to ~/openvino_models/
    cd /opt/intel/openvino/deployment_tools/open_model_zoo/tools/downloader/public
    cp -r [MODEL_NAME]/ ~/openvino_models/models/FP16/[MODEL_NAME]
  2. Optimize Caffe model

    sudo python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo_caffe.py --input_model ~/openvino_models/models/FP16/[MODEL_NAME]/[MODEL_NAME].caffemodel --output_dir ~/openvino_models/ir/FP16/public/[MODEL_NAME]/ --mean_values [127.5,127.5,127.5] --scale_values [127.5]
    # Copy into ros_vino
    cp -r ~/openvino_models/ir/FP16/public/[MODEL_NAME]/ ~/catkin_ws/src/ros_vino/models/FP16/[MODEL_NAME]
  3. Change "model_path" parameter to the model xml file in launch file.

    <param name="model_path" value="$(find ros_vino)/[PATH-TO-XML]" />
  4. Launch!

    roslaunch ros_vino object_detection_ssd_realsense.launch

Known Issues

  • 'Graph' object has no attribute 'node' error when optimizing model.
    • Solution: Run python3 -m pip install networkx==2.3.

Todo

  • Write a new node for Object Detection Mask R-CNNs Segmentation in C++
  • Write an easy install bash script to setup all installation.

Notes

  • You're welcome to push issue and I will help you to make this dedicated package to work on your machine too.
  • You're welcome to suggest any Todo.
  • Don't forget to give a star if you like this package! Thanks!=D

About

A generic ROS wrapper for OpenVINO, support CPU, GPU and Myriad (Neural Compute Stick 2) platforms. Support latest OpenVINO R3 version, step by step instruction is included too!

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published