forked from PaddlePaddle/docs
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add cn doc for prroi_pool_op test=develop (PaddlePaddle#1156)
- Loading branch information
Showing
1 changed file
with
39 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
.. _cn_api_fluid_layers_prroi_pool: | ||
|
||
prroi_pool | ||
------------------------------- | ||
|
||
.. py:function:: paddle.fluid.layers.prroi_pool(input, rois, output_channels, spatial_scale, pooled_height, pooled_width, name=None) | ||
PRROIPool运算 | ||
|
||
精确区域池化方法(Precise region of interest pooling,也称为PRROIPooling)是对输入的 "感兴趣区域"(RoI)执行插值处理,将离散的特征图数据映射到一个连续空间,使用二重积分再求均值的方式实现Pooling。 | ||
|
||
通过积分方式计算ROI特征,反向传播时基于连续输入值计算梯度,使得反向传播连续可导的PRROIPooling。 有关更多详细信息,请参阅 https://arxiv.org/abs/1807.11590。 | ||
|
||
参数: | ||
- **input** (Variable) - (Tensor),PRROIPoolOp的输入。 输入张量的格式是NCHW。 其中N是批大小batch_size,C是输入通道的数量,H是输入特征图的高度,W是特征图宽度 | ||
- **rois** (Variable) - 要进行池化的RoI(感兴趣区域)。应为一个形状为(num_rois, 4)的二维LoDTensor,其lod level为1。给出[[x1, y1, x2, y2], ...],(x1, y1)为左上角坐标,(x2, y2)为右下角坐标。 | ||
- **output_channels** (integer) - (int),输出特征图的通道数。 对于共C个种类的对象分类任务,output_channels应该是(C + 1),该情况仅适用于分类任务。 | ||
- **spatial_scale** (float) - (float,default 1.0),乘法空间比例因子,用于将ROI坐标从其输入比例转换为池化使用的比例。默认值:1.0 | ||
- **pooled_height** (integer) - (int,默认值1),池化输出的高度。默认值:1 | ||
- **pooled_width** (integer) - (int,默认值1),池化输出的宽度。默认值:1 | ||
- **name** (str,default None) - 此层的名称。 | ||
|
||
返回: (Tensor),PRROIPoolOp的输出是形为 (num_rois,output_channels,pooled_h,pooled_w) 的4-D Tensor。 | ||
|
||
返回类型: 变量(Variable) | ||
|
||
**代码示例:** | ||
|
||
.. code-block:: python | ||
import paddle.fluid as fluid | ||
x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32') | ||
rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32') | ||
pool_out = fluid.layers.prroi_pool(x, rois, 10, 1.0, 7, 7) | ||