Skip to content

websprit/geohash

 
 

Repository files navigation

Build Status

GeoHash

  1. 坐标转换成52bit二进制编码值。

    • 52bit精度在0.6m足够满足搜索范围需求。

    • 算法,根据经纬度计算GeoHash二进制编码:

      • 首先将纬度范围(-90, 90)平分成两个区间(-90, 0)、(0, 90),纬度位于前一个区间,则编码为0,否则编码为1.
      • 经度也用同样的算法,对(-180, 180)依次细分.
      • 接下来将经度和纬度的编码合并,奇数位是纬度,偶数位是经度.
  2. 估算搜索范围起始值。

    52bit把地球总面积等分成2^26(2的26次方)个区域, 每个区域大小等于0.6mX0.6m的正方形面积. 同理如果采用30bit,就是把地球等分成2^15个区域, 每个区域大小等于1222mX1222m.

    精度估算

    • 算法, 如果用52位来表示一个坐标, 那么总共有: 2^26 * 2^26 = 2^52 个框:

      • 地球半径:radius = 6372797.560856m

      • 每个框的夹角:angle = 1 / 2^26 (2的26次方)

      • 每个框在地球表面的长度: length = 2 * π * radius * angle

        位数 精度
        52bit 0.59m
        50bit 1.19m
        30bit 1221.97m
        28bit 2443.94m
        26bit 4887.87m
        24bit 9775.75m
  3. 给出查询的中心坐标并计算其GeoHash值(52bit)。

  4. 计算中心坐标相邻的8个坐标(中心坐标在两个框边界会有误差,此规避误差)。

  5. 加上中心坐标共9个52bit的坐标值,针对每个坐标值参照搜索范围值算出区域值[MIN, MAX]。

    //搜索距离坐标(30.5464140000, 104.0748220000)3千米内9个候选范围坐标
    List<GeoRange> geoRanges = GeoSearch.range(30.5464140000, 104.0748220000, 3000);
    • 算法:MIN为坐标的搜索指定位起始长度后补零;MAX为坐标的搜索指定位终止长度后+1再补零。
  6. 使用Redis命令ZRANGEBYSCORE key MIN MAX WITHSCORES查找。

  7. 避免误差按照距离公式在将所有结果过滤一次(GeoHash反坐标再计算距离)。

使用方式

安装

Maven仓库

https://oss.sonatype.org

Maven
<dependency>
  <groupId>com.github.wenhao</groupId>
  <artifactId>geohash</artifactId>
  <version>1.0.0</version>
</dependency>
Gradle
repositories {
  mavenCentral()
}

dependencies {
  compile(
    "com.github.wenhao:geohash:1.0.0",
  )
}

####Example

#####需求

搜索2千米内所有的嘀嘀司机

#####实现

  1. 乘客坐标30.5464140000, 104.0748220000

  2. 嘀嘀司机不断地向Redis更新自己的坐标 假如司机坐标为30.5388942218,104.0555758833

     GeoHash geoHash = GeoHash.fromCoordinate(30.5388942218,104.0555758833)
     //4024744861876082L
     long longValue = geoHash.toLong();
    ZADD didiDriver 4024744861876082 driverId
    
  3. 乘客在搜索司机时先录入自己坐标到Redis

    ZADD passenger 4025111557750656 passengerId
    
  4. 2千米内计算出9个搜索范围

    List<GeoRange> geoRanges = GeoSearch.range(30.5464140000, 104.0748220000, 2000);
  5. 针对每一个搜索GeoRange范围调用Redis

    double min = geoRange.min();
    double max = geoRange.max();
    ZRANGEBYSCORE didiDriver min max WITHSCORES
    
  6. 最后使用距离公式刷选结果

    GeoHash geoHash = GeoHash.fromLong(4024744861876082L);
    double distance = geoHash.distance(30.5464140000, 104.0748220000);
    if(distance < 2000){
        //....
    }

此算法也可以使用其他的数据库如MySQL等.