(SIGSPATIAL 2023) DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models
This code is a PyTorch implementation of our SIGSPATIAL'23 paper "DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models". [arXiv]
🌟 If you find this resource helpful, please consider to star this repository and cite our research:
@inproceedings{wen2023diffstg,
title={{DiffSTG}: Probabilistic spatio-temporal graph forecasting with denoising diffusion models},
author={Wen, Haomin and Lin, Youfang and Xia, Yutong and Wan, Huaiyu and Wen, Qingsong and Zimmermann, Roger and Liang, Yuxuan},
booktitle={the 31st ACM International Conference on Advances in Geographic Information Systems},
year={2023}
}
- requirements:
torch
easydict
nni
- start training
python train.py
1, Diffusion Model for Time Series and SpatioTemporal Data [GitHub Repo]
2, Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook [arXiv] [GitHub Repo]
- Authors: Ming Jin, Qingsong Wen*, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li (IEEE Fellow), Shirui Pan*, Vincent S. Tseng (IEEE Fellow), Yu Zheng (IEEE Fellow), Lei Chen (IEEE Fellow), Hui Xiong (IEEE Fellow)