Skip to content

wenhaomin/DiffSTG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

(SIGSPATIAL 2023) DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models

This code is a PyTorch implementation of our SIGSPATIAL'23 paper "DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models". [arXiv]

Citing DiffSTG

🌟 If you find this resource helpful, please consider to star this repository and cite our research:

@inproceedings{wen2023diffstg,
  title={{DiffSTG}: Probabilistic spatio-temporal graph forecasting with denoising diffusion models},
  author={Wen, Haomin and Lin, Youfang and Xia, Yutong and Wan, Huaiyu and Wen, Qingsong and Zimmermann, Roger and Liang, Yuxuan},
  booktitle={the 31st ACM International Conference on Advances in Geographic Information Systems},
  year={2023}
}

Model Architecture

image

Run

  1. requirements:
torch
easydict
nni
  1. start training
python train.py

Further Reading

1, Diffusion Model for Time Series and SpatioTemporal Data [GitHub Repo]

2, Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook [arXiv] [GitHub Repo]

  • Authors: Ming Jin, Qingsong Wen*, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li (IEEE Fellow), Shirui Pan*, Vincent S. Tseng (IEEE Fellow), Yu Zheng (IEEE Fellow), Lei Chen (IEEE Fellow), Hui Xiong (IEEE Fellow)

About

Code for DiffSTG

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages