forked from Cambricon/mlu-ops
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature](mlu-ops): add moe_dispatch_backward_data new op. (Cambricon…
…#461) Co-authored-by: ZhangLearning <[email protected]>
- Loading branch information
1 parent
5a728a1
commit 1e6517a
Showing
12 changed files
with
1,758 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
224 changes: 224 additions & 0 deletions
224
bangc-ops/kernels/moe_dispatch_backward_data/moe_dispatch_backward_data.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
/************************************************************************* | ||
* Copyright (C) [2022] by Cambricon, Inc. | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a | ||
* copy of this software and associated documentation files (the | ||
* "Software"), to deal in the Software without restriction, including | ||
* without limitation the rights to use, copy, modify, merge, publish, | ||
* distribute, sublicense, and/or sell copies of the Software, and to | ||
* permit persons to whom the Software is furnished to do so, subject to | ||
* the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included | ||
* in all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | ||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | ||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
*************************************************************************/ | ||
#include <string> | ||
|
||
#include "core/context.h" | ||
#include "core/gen_case.h" | ||
#include "core/logging.h" | ||
#include "core/runtime/device.h" | ||
#include "core/tensor.h" | ||
#include "core/type.h" | ||
#include "mlu_op.h" | ||
#include "mlu_op_kernel.h" | ||
|
||
// policy function | ||
static void PolicyFunc(const mluOpHandle_t handle, cnrtDim3_t *k_dim, | ||
cnrtFunctionType_t *k_type) { | ||
// union1 policy func | ||
*k_type = CNRT_FUNC_TYPE_UNION1; | ||
// dimx equals to num of MLU Cores in each cluster | ||
k_dim->x = mluop::runtime::getCoreNumOfEachUnionCapability(handle); | ||
// dimy equals to num of current available clusters | ||
k_dim->y = mluop::runtime::getClusterLimitCapability(handle); | ||
k_dim->z = 1; | ||
} | ||
|
||
mluOpStatus_t MLUOP_WIN_API mluOpMoeDispatchBackwardData( | ||
mluOpHandle_t handle, const mluOpTensorDescriptor_t gates_desc, | ||
const void *gates, const mluOpTensorDescriptor_t indices_desc, | ||
const void *indices, const mluOpTensorDescriptor_t locations_desc, | ||
const void *locations, const mluOpTensorDescriptor_t dispatch_desc, | ||
const void *dispatch, const int samples, const int capacity, | ||
const int hidden, const int num_experts, | ||
const mluOpTensorDescriptor_t grad_input_desc, void *grad_input) { | ||
// gates: (samples) | ||
// indices: (samples) | ||
// locations: (samples) | ||
// dispatch: (num_experts * capacity, hidden) | ||
// grad_input: (samples, hidden) | ||
|
||
const std::string API = "[mluOpMoeDispatchBackwardData]"; | ||
// check desc | ||
PARAM_CHECK(API, handle != NULL); | ||
// check arch | ||
if (handle->arch < MLUOP_MLU370) { | ||
LOG(ERROR) << API | ||
<< "The operator does not match the current architecture."; | ||
return MLUOP_STATUS_ARCH_MISMATCH; | ||
} | ||
PARAM_CHECK(API, gates_desc != NULL); | ||
PARAM_CHECK(API, indices_desc != NULL); | ||
PARAM_CHECK(API, locations_desc != NULL); | ||
PARAM_CHECK(API, dispatch_desc != NULL); | ||
PARAM_CHECK(API, grad_input_desc != NULL); | ||
|
||
// check dim | ||
PARAM_CHECK_EQ(API, gates_desc->dim, 1); | ||
PARAM_CHECK_EQ(API, indices_desc->dim, 1); | ||
PARAM_CHECK_EQ(API, locations_desc->dim, 1); | ||
PARAM_CHECK_EQ(API, dispatch_desc->dim, 2); | ||
PARAM_CHECK_EQ(API, grad_input_desc->dim, 2); | ||
|
||
// check shape | ||
PARAM_CHECK_EQ(API, gates_desc->dims[0], samples); | ||
PARAM_CHECK_EQ(API, indices_desc->dims[0], samples); | ||
PARAM_CHECK_EQ(API, locations_desc->dims[0], samples); | ||
PARAM_CHECK_EQ(API, dispatch_desc->dims[0], (num_experts * capacity)); | ||
PARAM_CHECK_EQ(API, dispatch_desc->dims[1], hidden); | ||
PARAM_CHECK_EQ(API, grad_input_desc->dims[0], samples); | ||
PARAM_CHECK_EQ(API, grad_input_desc->dims[1], hidden); | ||
|
||
// check dtype | ||
PARAM_CHECK_V2(API, (gates_desc->dtype == MLUOP_DTYPE_FLOAT), | ||
"Only float are supported in input tensor, but the " | ||
"data type of tensor is " | ||
<< mluop::getNameOfDataType(gates_desc->dtype) << "."); | ||
PARAM_CHECK_V2(API, (indices_desc->dtype == MLUOP_DTYPE_INT32), | ||
"Only int32 are supported in indices tensor, but the data " | ||
"type of tensor is " | ||
<< mluop::getNameOfDataType(indices_desc->dtype) << "."); | ||
PARAM_CHECK_V2(API, (locations_desc->dtype == MLUOP_DTYPE_INT32), | ||
"Only int32 are supported in locations tensor, but the data " | ||
"type of tensor is " | ||
<< mluop::getNameOfDataType(locations_desc->dtype) << "."); | ||
PARAM_CHECK(API, dispatch_desc->dtype == gates_desc->dtype); | ||
PARAM_CHECK(API, grad_input_desc->dtype == gates_desc->dtype); | ||
|
||
// check tensor dim | ||
PARAM_CHECK(API, samples >= 0); | ||
PARAM_CHECK(API, capacity >= 0); | ||
PARAM_CHECK(API, hidden >= 0); | ||
PARAM_CHECK(API, num_experts >= 0); | ||
|
||
const uint64_t gates_element_num = mluOpGetTensorElementNum(gates_desc); | ||
const uint64_t indices_element_num = mluOpGetTensorElementNum(indices_desc); | ||
const uint64_t locations_element_num = | ||
mluOpGetTensorElementNum(locations_desc); | ||
const uint64_t dispatch_element_num = mluOpGetTensorElementNum(dispatch_desc); | ||
const uint64_t grad_input_element_num = | ||
mluOpGetTensorElementNum(grad_input_desc); | ||
|
||
// check large tensor | ||
TENSOR_NUM_CHECK(API, gates_element_num, LARGE_TENSOR_NUM, ""); | ||
TENSOR_NUM_CHECK(API, indices_element_num, LARGE_TENSOR_NUM, ""); | ||
TENSOR_NUM_CHECK(API, locations_element_num, LARGE_TENSOR_NUM, ""); | ||
TENSOR_NUM_CHECK(API, dispatch_element_num, LARGE_TENSOR_NUM, ""); | ||
TENSOR_NUM_CHECK(API, grad_input_element_num, LARGE_TENSOR_NUM, ""); | ||
|
||
// Initialize output space | ||
if (samples != 0 && hidden != 0) { | ||
const size_t grad_input_initial_value = 0x00; | ||
PARAM_CHECK(API, MLUOP_STATUS_SUCCESS == | ||
mluOpFill_v3(handle, MLUOP_POINTER_MODE_HOST, | ||
&grad_input_initial_value, | ||
grad_input_desc, grad_input)); | ||
VLOG(5) << API << "Initialize output tensor done."; | ||
} | ||
|
||
// check zero element | ||
if (capacity == 0 || num_experts == 0 || samples == 0 || hidden == 0) { | ||
VLOG(5) << API << "Skip zero element tensor."; | ||
return MLUOP_STATUS_SUCCESS; | ||
} | ||
|
||
// check ptr | ||
PARAM_CHECK(API, gates != NULL); | ||
PARAM_CHECK(API, indices != NULL); | ||
PARAM_CHECK(API, locations != NULL); | ||
PARAM_CHECK(API, dispatch != NULL); | ||
PARAM_CHECK(API, grad_input != NULL); | ||
|
||
VLOG(5) << API << "input data shape: " | ||
<< "samples = " << samples << ", " | ||
<< "capacity = " << capacity << ", " | ||
<< "hidden = " << hidden << ", " | ||
<< "num_experts = " << num_experts; | ||
|
||
// generate prototxt start! | ||
if (MLUOP_GEN_CASE_ON_NEW) { | ||
GEN_CASE_START("moe_dispatch_backward_data"); | ||
GEN_CASE_HANDLE(handle); | ||
GEN_CASE_DATA(true, "gates", gates, gates_desc, 100, -100); | ||
GEN_CASE_DATA_REAL(true, "indices", indices, indices_desc); | ||
GEN_CASE_DATA_REAL(true, "locations", locations, locations_desc); | ||
GEN_CASE_DATA(true, "dispatch", dispatch, dispatch_desc, 100, -100); | ||
GEN_CASE_DATA(false, "grad_input", grad_input, grad_input_desc, 0, 0); | ||
GEN_CASE_OP_PARAM_SINGLE(0, "moe_dispatch_backward_data", "samples", | ||
samples); | ||
GEN_CASE_OP_PARAM_SINGLE(1, "moe_dispatch_backward_data", "capacity", | ||
capacity); | ||
GEN_CASE_OP_PARAM_SINGLE(2, "moe_dispatch_backward_data", "hidden", hidden); | ||
GEN_CASE_OP_PARAM_SINGLE(3, "moe_dispatch_backward_data", "num_experts", | ||
num_experts); | ||
GEN_CASE_TEST_PARAM_NEW(false, false, true, 0, 0, 0.0); | ||
} | ||
// generate prototxt end! | ||
|
||
cnrtDim3_t k_dim; | ||
cnrtFunctionType_t k_type; | ||
PolicyFunc(handle, &k_dim, &k_type); | ||
|
||
int core_num_per_cluster = | ||
mluop::runtime::getCoreNumOfEachUnionCapability(handle); | ||
VLOG(5) << API << "Launch Kernel <<<Union" << k_type / core_num_per_cluster | ||
<< ", " << k_dim.x << ", " << k_dim.y << ", " << k_dim.z << ">>>" | ||
<< "core num per cluster: " << core_num_per_cluster; | ||
|
||
mluOpDataType_t data_type = grad_input_desc->dtype; | ||
uint32_t taskNum = k_dim.x * k_dim.y * k_dim.z; | ||
|
||
if (samples <= taskNum) { | ||
if (data_type == MLUOP_DTYPE_HALF) { | ||
VLOG(5) << API | ||
<< "Launch Kernel mluOpUnionKernelMoeDispatchBwdData1Half()."; | ||
KERNEL_CHECK((mluOpUnionKernelMoeDispatchBwdData1Half( | ||
k_dim, k_type, handle->queue, gates, indices, locations, dispatch, | ||
samples, capacity, hidden, num_experts, grad_input))); | ||
} else { | ||
VLOG(5) << API | ||
<< "Launch Kernel mluOpUnionKernelMoeDispatchBwdData1Float()."; | ||
KERNEL_CHECK((mluOpUnionKernelMoeDispatchBwdData1Float( | ||
k_dim, k_type, handle->queue, gates, indices, locations, dispatch, | ||
samples, capacity, hidden, num_experts, grad_input))); | ||
} | ||
VLOG(5) << API << "Finish Kernel mluOpUnionKernelMoeDispatchBwdData1."; | ||
} else { | ||
if (data_type == MLUOP_DTYPE_HALF) { | ||
VLOG(5) << API | ||
<< "Launch Kernel mluOpUnionKernelMoeDispatchBwdData2Half()."; | ||
KERNEL_CHECK((mluOpUnionKernelMoeDispatchBwdData2Half( | ||
k_dim, k_type, handle->queue, gates, indices, locations, dispatch, | ||
samples, capacity, hidden, num_experts, grad_input))); | ||
} else { | ||
VLOG(5) << API | ||
<< "Launch Kernel mluOpUnionKernelMoeDispatchBwdData2Float()."; | ||
KERNEL_CHECK((mluOpUnionKernelMoeDispatchBwdData2Float( | ||
k_dim, k_type, handle->queue, gates, indices, locations, dispatch, | ||
samples, capacity, hidden, num_experts, grad_input))); | ||
} | ||
VLOG(5) << API << "Finish Kernel mluOpUnionKernelMoeDispatchBwdData2."; | ||
} | ||
|
||
GEN_CASE_END(); | ||
return MLUOP_STATUS_SUCCESS; | ||
} |
Oops, something went wrong.