forked from Cambricon/mlu-ops
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TEST](indice_convolution_backward_filter):add api check cases for in…
…dice_convolution_backward_filter (Cambricon#411) Co-authored-by: wangxin1 <[email protected]>
- Loading branch information
Showing
3 changed files
with
1,015 additions
and
0 deletions.
There are no files selected for viewing
340 changes: 340 additions & 0 deletions
340
...gtest/src/gtest/indice_convolution_backward_filter/indice_convolution_backward_filter.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,340 @@ | ||
/************************************************************************* | ||
* Copyright (C) [2022] by Cambricon, Inc. | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a | ||
* copy of this software and associated documentation files (the | ||
* "Software"), to deal in the Software without restriction, including | ||
* without limitation the rights to use, copy, modify, merge, publish, | ||
* distribute, sublicense, and/or sell copies of the Software, and to | ||
* permit persons to whom the Software is furnished to do so, subject to | ||
* the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included | ||
* in all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY | ||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE | ||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
*************************************************************************/ | ||
#include <iostream> | ||
#include <vector> | ||
#include <string> | ||
#include <tuple> | ||
#include "api_test_tools.h" | ||
#include "core/context.h" | ||
#include "core/tensor.h" | ||
#include "core/logging.h" | ||
#include "gtest/gtest.h" | ||
#include "mlu_op.h" | ||
|
||
namespace mluopapitest { | ||
class indice_convolution_backward_filter : public testing::Test { | ||
public: | ||
void setParam(bool handle, bool features_desc, bool features, | ||
bool output_grad_desc, bool output_grad, bool indice_pairs_desc, | ||
bool indice_pairs, bool filters_grad_desc, bool filters_grad, | ||
bool indice_num, bool worksapce) { | ||
if (handle) { | ||
MLUOP_CHECK(mluOpCreate(&handle_)); | ||
} | ||
|
||
if (features_desc) { | ||
MLUOP_CHECK(mluOpCreateTensorDescriptor(&features_desc_)); | ||
std::vector<int> features_dims{3, 5}; | ||
MLUOP_CHECK(mluOpSetTensorDescriptor(features_desc_, MLUOP_LAYOUT_ARRAY, | ||
MLUOP_DTYPE_FLOAT, 2, | ||
features_dims.data())); | ||
} | ||
|
||
if (features) { | ||
if (features_desc) { | ||
GTEST_CHECK( | ||
CNRT_RET_SUCCESS == | ||
cnrtMalloc(&features_, mluOpGetTensorElementNum(features_desc_) * | ||
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} else { | ||
GTEST_CHECK( | ||
CNRT_RET_SUCCESS == | ||
cnrtMalloc(&features_, 64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} | ||
} | ||
|
||
if (output_grad_desc) { | ||
MLUOP_CHECK(mluOpCreateTensorDescriptor(&output_grad_desc_)); | ||
std::vector<int> output_grad_dims{3, 7}; | ||
MLUOP_CHECK(mluOpSetTensorDescriptor( | ||
output_grad_desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_FLOAT, 2, | ||
output_grad_dims.data())); | ||
} | ||
|
||
if (output_grad) { | ||
if (output_grad_desc) { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&output_grad_, | ||
mluOpGetTensorElementNum(output_grad_desc_) * | ||
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} else { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&output_grad_, | ||
64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} | ||
} | ||
|
||
if (indice_pairs_desc) { | ||
MLUOP_CHECK(mluOpCreateTensorDescriptor(&indice_pairs_desc_)); | ||
std::vector<int> indice_pairs_dims{9, 2, 3}; | ||
MLUOP_CHECK(mluOpSetTensorDescriptor( | ||
indice_pairs_desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_INT32, 3, | ||
indice_pairs_dims.data())); | ||
} | ||
|
||
if (indice_pairs) { | ||
if (indice_pairs_desc) { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&indice_pairs_, | ||
mluOpGetTensorElementNum(indice_pairs_desc_) * | ||
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} else { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&indice_pairs_, | ||
64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} | ||
} | ||
|
||
if (filters_grad_desc) { | ||
MLUOP_CHECK(mluOpCreateTensorDescriptor(&filters_grad_desc_)); | ||
std::vector<int> filters_grad_dims{3, 3, 5, 7}; | ||
MLUOP_CHECK(mluOpSetTensorDescriptor( | ||
filters_grad_desc_, MLUOP_LAYOUT_ARRAY, MLUOP_DTYPE_FLOAT, 4, | ||
filters_grad_dims.data())); | ||
} | ||
|
||
if (filters_grad) { | ||
if (filters_grad_desc) { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&filters_grad_, | ||
mluOpGetTensorElementNum(filters_grad_desc_) * | ||
mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} else { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == | ||
cnrtMalloc(&filters_grad_, | ||
64 * mluOpDataTypeBytes(MLUOP_DTYPE_FLOAT))); | ||
} | ||
} | ||
|
||
std::vector<int> num = {1, 2, 3, 4, 5, 6, 7, 8, 9}; | ||
for (int i = 0; i < num.size(); i++) { | ||
if (indice_num) { | ||
indice_num_.push_back(num[i]); | ||
} | ||
} | ||
|
||
if (worksapce) { | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtMalloc(&workspace_, workspace_size_)); | ||
} | ||
} | ||
mluOpStatus_t compute() { | ||
mluOpStatus_t status = mluOpIndiceConvolutionBackwardFilter( | ||
handle_, features_desc_, features_, output_grad_desc_, output_grad_, | ||
indice_pairs_desc_, indice_pairs_, indice_num_.data(), inverse_, sub_m_, | ||
workspace_, workspace_size_, filters_grad_desc_, filters_grad_); | ||
destroy(); | ||
return status; | ||
} | ||
|
||
protected: | ||
void destroy() { | ||
if (handle_) { | ||
CNRT_CHECK(cnrtQueueSync(handle_->queue)); | ||
VLOG(4) << "Destroy handle"; | ||
MLUOP_CHECK(mluOpDestroy(handle_)); | ||
handle_ = nullptr; | ||
} | ||
|
||
if (features_desc_) { | ||
VLOG(4) << "Destroy features_desc"; | ||
MLUOP_CHECK(mluOpDestroyTensorDescriptor(features_desc_)); | ||
features_desc_ = nullptr; | ||
} | ||
|
||
if (features_) { | ||
VLOG(4) << "Destroy features"; | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(features_)); | ||
features_ = nullptr; | ||
} | ||
|
||
if (output_grad_desc_) { | ||
VLOG(4) << "Destroy output_grad_desc"; | ||
MLUOP_CHECK(mluOpDestroyTensorDescriptor(output_grad_desc_)); | ||
output_grad_desc_ = nullptr; | ||
} | ||
|
||
if (output_grad_) { | ||
VLOG(4) << "Destroy output_grad"; | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(output_grad_)); | ||
output_grad_ = nullptr; | ||
} | ||
|
||
if (indice_pairs_desc_) { | ||
VLOG(4) << "Destroy indice_pairs_desc"; | ||
MLUOP_CHECK(mluOpDestroyTensorDescriptor(indice_pairs_desc_)); | ||
indice_pairs_desc_ = nullptr; | ||
} | ||
|
||
if (indice_pairs_) { | ||
VLOG(4) << "Destroy indice_pairs"; | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(indice_pairs_)); | ||
indice_pairs_ = nullptr; | ||
} | ||
|
||
if (workspace_) { | ||
VLOG(4) << "Destroy workspace"; | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(workspace_)); | ||
workspace_ = nullptr; | ||
} | ||
|
||
if (filters_grad_desc_) { | ||
VLOG(4) << "Destroy filters_grad_desc"; | ||
MLUOP_CHECK(mluOpDestroyTensorDescriptor(filters_grad_desc_)); | ||
filters_grad_desc_ = nullptr; | ||
} | ||
|
||
if (filters_grad_) { | ||
VLOG(4) << "Destroy filters_grad"; | ||
GTEST_CHECK(CNRT_RET_SUCCESS == cnrtFree(filters_grad_)); | ||
filters_grad_ = nullptr; | ||
} | ||
} | ||
|
||
private: | ||
mluOpHandle_t handle_ = nullptr; | ||
mluOpTensorDescriptor_t features_desc_ = nullptr; | ||
void *features_ = nullptr; | ||
mluOpTensorDescriptor_t output_grad_desc_ = nullptr; | ||
void *output_grad_ = nullptr; | ||
mluOpTensorDescriptor_t indice_pairs_desc_ = nullptr; | ||
void *indice_pairs_ = nullptr; | ||
std::vector<int64_t> indice_num_; | ||
int64_t inverse_ = 0; | ||
int64_t sub_m_ = 0; | ||
void *workspace_ = nullptr; | ||
size_t workspace_size_ = 64; | ||
mluOpTensorDescriptor_t filters_grad_desc_ = nullptr; | ||
void *filters_grad_ = nullptr; | ||
}; | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_handle_null) { | ||
try { | ||
setParam(false, true, true, true, true, true, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_features_desc_null) { | ||
try { | ||
setParam(true, false, true, true, true, true, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_features_null) { | ||
try { | ||
setParam(true, true, false, true, true, true, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_output_grad_desc_null) { | ||
try { | ||
setParam(true, true, true, false, true, true, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_output_grad_null) { | ||
try { | ||
setParam(true, true, true, true, false, true, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_indice_pairs_desc_null) { | ||
try { | ||
setParam(true, true, true, true, true, false, true, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_indice_pairs_null) { | ||
try { | ||
setParam(true, true, true, true, true, true, false, true, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_filters_grad_desc_null) { | ||
try { | ||
setParam(true, true, true, true, true, true, true, false, true, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_filters_grad_null) { | ||
try { | ||
setParam(true, true, true, true, true, true, true, true, false, true, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_indice_num_null) { | ||
try { | ||
setParam(true, true, true, true, true, true, true, true, true, false, true); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
TEST_F(indice_convolution_backward_filter, BAD_PARAM_workspace_null) { | ||
try { | ||
setParam(true, true, true, true, true, true, true, true, true, true, false); | ||
EXPECT_TRUE(MLUOP_STATUS_BAD_PARAM == compute()); | ||
} catch (std::exception &e) { | ||
FAIL() << "MLUOPAPIGTEST: catched " << e.what() | ||
<< " in indice_convolution_backward_filter"; | ||
} | ||
} | ||
|
||
} // namespace mluopapitest |
Oops, something went wrong.