This is repository of the 4th place solution of
kaggleFreesound Audio Tagging 2019 competition.
The discription of this solution is available at
http://dcase.community/challenge2019/task-audio-tagging-results#Akiyama2019
https://www.kaggle.com/c/freesound-audio-tagging-2019/discussion/96440
- Python 3.6.6
- CUDA 10.0
- numpy (1.16.4)
- pandas (0.23.4)
- matplotlib (3.1.0)
- Pytorch (1.1.0)
- librosa (0.6.3)
- sci-kit learn (0.21.2)
- scipy (1.2.1)
- pretrainedmodels (0.7.4)
Download the dataset
and place them in input/
.
Unzip zip files and place them to train_curated/
, train_noisy/
, test/
.
In case you use pretrained weights, download the weights,
unzip zipped weights and place them to models/resnet_model1/
, models/resnet_model2/
and so on.
Run src/preprocess.py
.
Run src/train_model1.py
.
Run src/get_pseudo_label.py
.
Run src/train_model2.py
.
Run src/train_model3.py
.
Run src/train_model4_0.py
.
Run src/train_model4.py
.
Run src/train_model5.py
.
Run src/train_model6_0.py
.
Run src/train_model6.py
.
Run src/make_final_submission1.py
. The submission file output/submission1.csv
will be generted.
Run src/make_final_submission2.py
. . The submission file output/submission2.csv
will be generted.