Skip to content

Commit

Permalink
Add some papers
Browse files Browse the repository at this point in the history
  • Loading branch information
wzhe06 committed Aug 14, 2017
1 parent f30be35 commit d64df45
Show file tree
Hide file tree
Showing 12 changed files with 18 additions and 1 deletion.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
19 changes: 18 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
国立台湾大学的文章,介绍一种基于流量选择的计算广告竞价方法,有别于传统的CTR CPC的方法,我在实践中尝试过该方法,非常有效
* [Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Real-Time%20Bidding%20Algorithms%20for%20Performance-Based%20Display%20Ad%20Allocation.pdf) <br />
微软的一篇基于PID反馈控制的与效果相关的竞价算法
* [Real-Time Bidding by Reinforcement Learning in Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Real-Time%20Bidding%20by%20Reinforcement%20Learning%20in%20Display%20Advertising.pdf) <br />
* [Research Frontier of Real-Time Bidding based Display Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Bidding%20Strategy/Research%20Frontier%20of%20Real-Time%20Bidding%20based%20Display%20Advertising.pdf) <br />
张伟楠博士的一篇介绍竞价算法的ppt,可以非常清晰的了解该问题的主要方法

Expand All @@ -34,6 +35,7 @@ linkedin的一篇非常有工程价值的解决pacing问题的文章,强烈建
对于采用PID控制解决pacing问题,该文章是PID控制原理比较清晰的介绍文章。
* [PID控制经典培训教程.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Budget%20Control/PID%E6%8E%A7%E5%88%B6%E7%BB%8F%E5%85%B8%E5%9F%B9%E8%AE%AD%E6%95%99%E7%A8%8B.pdf) <br />
PID控制的经典教程
* [Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-Side Platforms.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Budget%20Control/Predicting%20Traffic%20of%20Online%20Advertising%20in%20Real-time%20Bidding%20Systems%20from%20Perspective%20of%20Demand-Side%20Platforms.pdf) <br />
* [Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Budget%20Control/Real%20Time%20Bid%20Optimization%20with%20Smooth%20Budget%20Delivery%20in%20Online%20Advertising.pdf) <br />
如何将Pcaing与效果优化结合在一起,这篇文章讲的很清楚
* [Smart Pacing for Effective Online Ad Campaign Optimization.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Budget%20Control/Smart%20Pacing%20for%20Effective%20Online%20Ad%20Campaign%20Optimization.pdf) <br />
Expand All @@ -43,6 +45,8 @@ PID控制的经典教程
广告系统的架构问题
* [Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Display%20Advertising%20with%20Real-Time%20Bidding%20%28RTB%29%20and%20Behavioural%20Targeting.pdf) <br />
张伟楠博士的RTB过程所有相关算法的书,全而精,非常棒
* [Parameter Server for Distributed Machine Learning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Parameter%20Server%20for%20Distributed%20Machine%20Learning.pdf) <br />
* [Scaling Distributed Machine Learning with the Parameter Server.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/Scaling%20Distributed%20Machine%20Learning%20with%20the%20Parameter%20Server.pdf) <br />
* [大数据下的广告排序技术及实践.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E5%A4%A7%E6%95%B0%E6%8D%AE%E4%B8%8B%E7%9A%84%E5%B9%BF%E5%91%8A%E6%8E%92%E5%BA%8F%E6%8A%80%E6%9C%AF%E5%8F%8A%E5%AE%9E%E8%B7%B5.pdf) <br />
阿里妈妈的一篇广告排序问题的ppt,模型、训练、评估都有涉及,很有工程价值
* [美团机器学习 吃喝玩乐中的算法问题.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Computational%20Advertising%20Architect/%E7%BE%8E%E5%9B%A2%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%20%E5%90%83%E5%96%9D%E7%8E%A9%E4%B9%90%E4%B8%AD%E7%9A%84%E7%AE%97%E6%B3%95%E9%97%AE%E9%A2%98.pdf) <br />
Expand All @@ -54,6 +58,7 @@ CTR预估模型相关问题
Google大名鼎鼎的用FTRL解决CTR在线预估的工程文章,非常经典。
* [Adaptive Targeting for Online Advertisement.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Adaptive%20Targeting%20for%20Online%20Advertisement.pdf) <br />
一篇比较简单但是全面的CTR预估的文章,有一定实用性
* [Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Learning%20Piece-wise%20Linear%20Models%20from%20Large%20Scale%20Data%20for%20Ad%20Click%20Prediction.pdf) <br />
* [Logistic Regression in Rare Events Data.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Logistic%20Regression%20in%20Rare%20Events%20Data.pdf) <br />
样本稀少情况下的LR模型训练,讲的比较细
* [Practical Lessons from Predicting Clicks on Ads at Facebook.pdf](https://github.com/wzhe06/Ad-papers/blob/master/CTR%20Prediction/Practical%20Lessons%20from%20Predicting%20Clicks%20on%20Ads%20at%20Facebook.pdf) <br />
Expand All @@ -62,17 +67,29 @@ Facebook的一篇非常出名的文章,GBDT+LR/FM解决CTR预估问题,工
### Explore and Exploit
探索和利用问题,计算广告中非常经典的问题, 也是容易被大家忽视的问题,其实所有的广告系统都面临如何解决新广告主冷启动的问题,以及在效果不好的情况下如何探索新的优质流量的问题,希望该目录下的几篇文章能搞帮助到你。
* [A Contextual-Bandit Approach to Personalized News Article Recommendation(LinUCB).pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/A%20Contextual-Bandit%20Approach%20to%20Personalized%20News%20Article%20Recommendation%28LinUCB%29.pdf) <br />
* [A Fast and Simple Algorithm for Contextual Bandits.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/A%20Fast%20and%20Simple%20Algorithm%20for%20Contextual%20Bandits.pdf) <br />
* [An Empirical Evaluation of Thompson Sampling.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/An%20Empirical%20Evaluation%20of%20Thompson%20Sampling.pdf) <br />
* [Analysis of Thompson Sampling for the Multi-armed Bandit Problem.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Analysis%20of%20Thompson%20Sampling%20for%20the%20Multi-armed%20Bandit%20Problem.pdf) <br />
* [Bandit Algorithms Continued- UCB1.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Bandit%20Algorithms%20Continued-%20UCB1.pdf) <br />
* [Bandit based Monte-Carlo Planning.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Bandit%20based%20Monte-Carlo%20Planning.pdf) <br />
* [Customer Acquisition via Display Advertising Using MultiArmed Bandit Experiments.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Customer%20Acquisition%20via%20Display%20Advertising%20Using%20MultiArmed%20Bandit%20Experiments.pdf) <br />
* [Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Dynamic%20Online%20Pricing%20with%20Incomplete%20Information%20Using%20Multi-Armed%20Bandit%20Experiments.pdf) <br />
* [EandE.pptx](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/EandE.pptx) <br />
* [Exploitation and Exploration in a Performance based Contextual Advertising System.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Exploitation%20and%20Exploration%20in%20a%20Performance%20based%20Contextual%20Advertising%20System.pdf) <br />
* [Exploration exploitation in Go UCT for Monte-Carlo Go.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Exploration%20exploitation%20in%20Go%20UCT%20for%20Monte-Carlo%20Go.pdf) <br />
* [Finite-time Analysis of the Multiarmed Bandit Problem.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Finite-time%20Analysis%20of%20the%20Multiarmed%20Bandit%20Problem.pdf) <br />
* [Hierarchical Deep Reinforcement Learning- Integrating Temporal Abstraction and Intrinsic Motivation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Hierarchical%20Deep%20Reinforcement%20Learning-%20Integrating%20Temporal%20Abstraction%20and%20Intrinsic%20Motivation.pdf) <br />
* [INCENTIVIZING EXPLORATION IN REINFORCEMENT LEARNING WITH DEEP PREDICTIVE MODELS.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/INCENTIVIZING%20EXPLORATION%20IN%20REINFORCEMENT%20LEARNING%20WITH%20DEEP%20PREDICTIVE%20MODELS.pdf) <br />
* [Mastering the game of Go with deep neural networks and tree search.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Mastering%20the%20game%20of%20Go%20with%20deep%20neural%20networks%20and%20tree%20search.pdf) <br />
* [Multi-Armed Bandits Gittins Index and Its Calculation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Multi-Armed%20Bandits%20Gittins%20Index%20and%20Its%20Calculation.pdf) <br />
* [On the Prior Sensitivity of Thompson Sampling.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/On%20the%20Prior%20Sensitivity%20of%20Thompson%20Sampling.pdf) <br />
* [Provable Optimal Algorithms for Generalized Linear Contextual Bandits.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Provable%20Optimal%20Algorithms%20for%20Generalized%20Linear%20Contextual%20Bandits.pdf) <br />
* [Random Forest for the Contextual Bandit Problem.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Random%20Forest%20for%20the%20Contextual%20Bandit%20Problem.pdf) <br />
* [Thompson Sampling PPT.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Thompson%20Sampling%20PPT.pdf) <br />
* [UCT算法.doc](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/UCT%E7%AE%97%E6%B3%95.doc) <br />
* [Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Mrcrosofts Bing Search Engine.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Web-Scale%20Bayesian%20Click-Through%20Rate%20Prediction%20for%20Sponsored%20Search%20Advertising%20in%20Mrcrosofts%20Bing%20Search%20Engine.pdf) <br />
* [Unifying Count-Based Exploration and Intrinsic Motivation.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Unifying%20Count-Based%20Exploration%20and%20Intrinsic%20Motivation.pdf) <br />
* [Using Confidence Bounds for Exploitation-Exploration Trade-offs.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Using%20Confidence%20Bounds%20for%20Exploitation-Exploration%20Trade-offs.pdf) <br />
* [Variational Information Maximizing Exploration.pdf](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/Variational%20Information%20Maximizing%20Exploration.pdf) <br />
* [基于UCT的围棋引擎的研究与实现.doc](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/%E5%9F%BA%E4%BA%8EUCT%E7%9A%84%E5%9B%B4%E6%A3%8B%E5%BC%95%E6%93%8E%E7%9A%84%E7%A0%94%E7%A9%B6%E4%B8%8E%E5%AE%9E%E7%8E%B0.doc) <br />
* [对抗搜索、多臂老虎机问题、UCB算法.ppt](https://github.com/wzhe06/Ad-papers/blob/master/Explore%20and%20Exploit/%E5%AF%B9%E6%8A%97%E6%90%9C%E7%B4%A2%E3%80%81%E5%A4%9A%E8%87%82%E8%80%81%E8%99%8E%E6%9C%BA%E9%97%AE%E9%A2%98%E3%80%81UCB%E7%AE%97%E6%B3%95.ppt) <br />

Expand Down

0 comments on commit d64df45

Please sign in to comment.