Skip to content

Official code for "I2D-Loc: Camera Localization via Image to LiDAR Depth Flow"

Notifications You must be signed in to change notification settings

whu-lyh/I2D-Loc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

I2D-Loc

This repository contains the source code for our paper:

I2D-Loc: Camera localization via image to LiDAR depth flow
ISPRS 2022
Kuangyi Chen, Huai Yu, Wen Yang, Lei Yu, Sebastian Scherer and Gui-Song Xia

Requirements

The code has been trained and tested with PyTorch 1.12 and Cuda 11.6.

conda create -n i2d python=3.7 -y
conda activate i2d
pip install -r requirements.txt
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116
cd core/correlation_package
python setup.py install
cd ..
cd visibility_package
python setup.py install
cd ../..

Demos

Pretrained models can be downloaded from google drive

You can demo a trained model on a sequence of frames

python demo.py --load_checkpoints checkpoints/2_10/checkpoints.pth --render

Required Data

To evaluate/train I2D-Loc, you will need to download the required datasets.

We trained and tested I2D-Loc on the KITTI odometry sequences 00, 03, 05, 07, 08, and 09. To obtain the whole LiDAR maps, we aggregate all scans at their ground truth positions. Then, we down-sample the LiDAR maps at a resolution of 0.1m. The downsampled point clouds are saved as h5 files.

Use the script preprocess/kitti_maps.py with the ground truth files in data/ to generate the h5 files.

python preprocess/kitti_maps.py --sequence 00 --kitti_folder ./KITTI_ODOMETRY/
python preprocess/kitti_maps.py --sequence 03 --kitti_folder ./KITTI_ODOMETRY/
python preprocess/kitti_maps.py --sequence 05 --kitti_folder ./KITTI_ODOMETRY/
python preprocess/kitti_maps.py --sequence 06 --kitti_folder ./KITTI_ODOMETRY/
python preprocess/kitti_maps.py --sequence 07 --kitti_folder ./KITTI_ODOMETRY/
python preprocess/kitti_maps.py --sequence 08 --kitti_folder ./KITTI_ODOMETRY/ --end 3000
python preprocess/kitti_maps.py --sequence 08 --kitti_folder ./KITTI_ODOMETRY/ --start 3000
python preprocess/kitti_maps.py --sequence 09 --kitti_folder ./KITTI_ODOMETRY/

The final directory structure should look like:

├── datasets
    ├── KITTI
        ├── sequences
            ├── 00
                ├── image_2
                    ├── *.png
                ├── local_maps_0.1
                    ├── *.h5
                ├── calib.txt
                ├── map-00_0.1_0-4541.pcd
                ├── poses.csv
            ├── 03
            ├── 05
            ├── 06
            ├── 07
            ├── 08
            ├── 09

Evaluation

You can evaluate a trained model using main.py

python main.py --data_path /data/KITTI/sequences --load_checkpoints checkpoints/2_10/checkpoints.pth -e

Training

You can train a model using main.py. Training logs will be written to the runs which can be visualized using tensorboard.

python main.py --data_path /data/KITTI/sequences --test_sequence 00 --epochs 100 --batch_size 2 --lr 4e-5 --gpus 0 --max_r 10. --max_t 2. --evaluate_interval 1

If you want to train a model using BPnP as back-end, you can use main_bpnp.py.

python main_bpnp.py --data_path /data/KITTI/sequences --test_sequence 00 --epochs 100 --batch_size 2 --lr 4e-5 --gpus 0 --max_r 10. --max_t 2. --evaluate_interval 1

Citation

@inproceedings{CHEN2022209,
  title={{I2D-Loc: Camera Localization via Image to LiDAR Depth Flow}},
  author={Kuangyi Chen, Huai Yu, Wen Yang, Lei Yu, Sebastian Scherer and Gui-Song Xia},
  booktitle={ISPRS Journal of Photogrammetry and Remote Sensing},
  volume = {194},
  pages = {209-221},
  year={2022},
  issn = {0924-2716}
}

Acknowledgments

The code is based on CMRNet, RAFT, and BPnP.

About

Official code for "I2D-Loc: Camera Localization via Image to LiDAR Depth Flow"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 63.9%
  • Cuda 28.7%
  • C++ 7.4%