Skip to content

Commit

Permalink
Merge pull request X-LANCE#67 from ddlBoJack/main
Browse files Browse the repository at this point in the history
sync
  • Loading branch information
ddlBoJack authored May 7, 2024
2 parents 54c69a9 + e2e5437 commit 211c2c2
Show file tree
Hide file tree
Showing 33 changed files with 6,125 additions and 36 deletions.
7 changes: 6 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,9 @@ wandb/
log/
*.log
outputs/
data/
data/

.gitignore
examples/vsr_LRS3/scripts/decode_avhubert_vo_vicuna_7b_noself.sh
examples/asr_librispeech/scripts/decode_hubert_xtralarge_linear_vicuna_7b_copy.sh
examples/vsr_LRS3/scripts/decode_avhubert_vo_vicuna_7b_copy.sh
2 changes: 1 addition & 1 deletion examples/asr_librispeech/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ We only train the linear projector in this recipe.
Encoder | Projector | LLM | test-clean | test-other
|---|---|---|---|---
[WavLM-large](https://drive.google.com/file/d/12-cB34qCTvByWT-QtOcZaqwwO21FLSqU/view) | [Linear](https://drive.google.com/file/d/1cLNuMR05oXxKj8M_Z3yAZ5JHJ06ybIHp/view?usp=sharing)(~18.88M) | [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | 2.28 | 4.78

[hubert_xtralarge_ll60k_finetune_ls960](https://dl.fbaipublicfiles.com/hubert/hubert_xtralarge_ll60k_finetune_ls960.pt) | [Linear](https://drive.google.com/file/d/1Np7EjMYSZCl7M6Q92pt_MvOSSX6ggJPA/view?usp=drive_link)(~21.50M) | [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | 1.84 | 3.39

## Data preparation
You need to prepare the data jsonl in this format.
Expand Down
7 changes: 5 additions & 2 deletions examples/asr_librispeech/asr_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,10 @@ class ModelConfig:
encoder_projector_ds_rate: int = 5
modal: str = "audio"
normalize: Optional[bool] = field(default=False, metadata={
"help": "whether inpit is normalized, used for models such as wavlm"
"help": "whether input is normalized, used for models such as wavlm"
})
encoder_type: str = field(default="finetune", metadata={
"help": "whether model is only pretrained or finetuned, used for models such as hubert"
})

@dataclass
Expand Down Expand Up @@ -97,7 +100,7 @@ class DataConfig:
"help": "80 for whisper large v1 and v2, 128 for v3"
})
normalize: Optional[bool] = field(default=False, metadata={
"help": "whether inpit is normalized, used for models such as wavlm"
"help": "whether input is normalized, used for models such as wavlm"
})

@dataclass
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
#!/bin/bash
#export PYTHONPATH=/root/whisper:$PYTHONPATH
export PYTHONPATH=/root/fairseq:$PYTHONPATH
export CUDA_VISIBLE_DEVICES=0
export TOKENIZERS_PARALLELISM=false
# export CUDA_LAUNCH_BLOCKING=1

run_dir=/root/SLAM-LLM
cd $run_dir
code_dir=examples/asr_librispeech

speech_encoder_path=/nfs/yangguanrou.ygr/ckpts/hubert_ckpt/hubert_xtralarge_ll60k_finetune_ls960.pt
llm_path=/nfs/maziyang.mzy/models/vicuna-7b-v1.5

output_dir=/nfs/yangguanrou.ygr/experiments_hubert/vicuna-7b-v1.5-hubert_xtralarge_ll60k_finetune_ls960
ckpt_path=$output_dir/asr_epoch_1_step_1000
split=librispeech_test_clean
val_data_path=/nfs/maziyang.mzy/data/librispeech/${split}.jsonl
decode_log=$ckpt_path/decode_${split}_beam4

# -m debugpy --listen 5678 --wait-for-client
python $code_dir/inference_asr_batch.py \
--config-path "conf" \
--config-name "prompt.yaml" \
hydra.run.dir=$ckpt_path \
++model_config.llm_name="vicuna-7b-v1.5" \
++model_config.llm_path=$llm_path \
++model_config.llm_dim=4096 \
++model_config.encoder_name=hubert \
++model_config.normalize=true \
++dataset_config.normalize=true \
++model_config.encoder_projector_ds_rate=5 \
++model_config.encoder_path=$speech_encoder_path \
++model_config.encoder_dim=1280 \
++model_config.encoder_type=finetune \
++model_config.encoder_projector=linear \
++dataset_config.dataset=speech_dataset \
++dataset_config.val_data_path=$val_data_path \
++dataset_config.input_type=raw \
++dataset_config.inference_mode=true \
++dataset_config.prompt="Transcribe speech to text. " \
++train_config.model_name=asr \
++train_config.freeze_encoder=true \
++train_config.freeze_llm=true \
++train_config.batching_strategy=custom \
++train_config.num_epochs=1 \
++train_config.val_batch_size=1 \
++train_config.num_workers_dataloader=0 \
++train_config.output_dir=$output_dir \
++decode_log=$decode_log \
++ckpt_path=$ckpt_path/model.pt \
# ++peft_ckpt=$ckpt_path \
# ++train_config.use_peft=true \
# ++train_config.peft_config.r=32 \
# ++dataset_config.normalize=true \
# ++model_config.encoder_projector=q-former \
# ++dataset_config.fix_length_audio=64 \

python src/slam_llm/utils/whisper_tn.py ${decode_log}_gt ${decode_log}_gt.proc
python src/slam_llm/utils/whisper_tn.py ${decode_log}_pred ${decode_log}_pred.proc
python src/slam_llm/utils/compute_wer.py ${decode_log}_gt.proc ${decode_log}_pred.proc ${decode_log}.proc.wer
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
#!/bin/bash
# export PYTHONPATH=/root/whisper:$PYTHONPATH
export PYTHONPATH=/root/fairseq:$PYTHONPATH
export CUDA_VISIBLE_DEVICES=2,3
export TOKENIZERS_PARALLELISM=false
# export CUDA_LAUNCH_BLOCKING=1
export OMP_NUM_THREADS=1

# debug setting for multiple gpus
# export NCCL_DEBUG=INFO
# export NCCL_DEBUG_SUBSYS=ALL
# export TORCH_DISTRIBUTED_DEBUG=INFO

run_dir=/root/SLAM-LLM
cd $run_dir
code_dir=examples/asr_librispeech

speech_encoder_path=/nfs/yangguanrou.ygr/ckpts/hubert_ckpt/hubert_xtralarge_ll60k_finetune_ls960.pt
llm_path=/nfs/maziyang.mzy/models/vicuna-7b-v1.5
train_data_path=/nfs/maziyang.mzy/data/librispeech/librispeech_train_960h.jsonl
val_data_path=/nfs/maziyang.mzy/data/librispeech/librispeech_dev_other.jsonl

output_dir=/root/tmp/vicuna-7b-v1.5-librispeech-linear-steplrwarmupkeep1e-4-hubert-xtralarge-$(date +"%Y%m%d")

hydra_args="
hydra.run.dir=$output_dir \
++model_config.llm_name=vicuna-7b-v1.5 \
++model_config.llm_path=$llm_path \
++model_config.llm_dim=4096 \
++model_config.encoder_name=hubert \
++model_config.normalize=true \
++dataset_config.normalize=true \
++model_config.encoder_projector_ds_rate=5 \
++model_config.encoder_path=$speech_encoder_path \
++model_config.encoder_dim=1280 \
++model_config.encoder_type=finetune \
++model_config.encoder_projector=linear \
++dataset_config.dataset=speech_dataset \
++dataset_config.train_data_path=$train_data_path \
++dataset_config.val_data_path=$val_data_path \
++dataset_config.input_type=raw \
++train_config.model_name=asr \
++train_config.num_epochs=3 \
++train_config.freeze_encoder=true \
++train_config.freeze_llm=true \
++train_config.batching_strategy=custom \
++train_config.warmup_steps=1000 \
++train_config.total_steps=100000 \
++train_config.lr=1e-4 \
++train_config.validation_interval=2000 \
++train_config.batch_size_training=6 \
++train_config.val_batch_size=6 \
++train_config.num_workers_dataloader=0 \
++train_config.output_dir=$output_dir \
++metric=acc \
"

# -m debugpy --listen 5678 --wait-for-client
if [[ $CUDA_VISIBLE_DEVICES != *","* ]]; then
python -m debugpy --listen 5678 --wait-for-client $code_dir/finetune_asr.py \
--config-path "conf" \
--config-name "prompt.yaml" \
$hydra_args
else
torchrun \
--nnodes 1 \
--nproc_per_node 2 \
--master_port=29503 \
$code_dir/finetune_asr.py \
--config-path "conf" \
--config-name "prompt.yaml" \
++train_config.enable_fsdp=false \
++train_config.enable_ddp=true \
++train_config.use_fp16=true \
$hydra_args
fi
30 changes: 30 additions & 0 deletions examples/vsr_LRS3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# VSR_LRS3

## Performance and checkpoints
We only train the linear projector in this recipe.
Encoder | Projector | LLM | test
|---|---|---|---|
[AV-HuBERT Large + Self-Training](https://dl.fbaipublicfiles.com/avhubert/model/lrs3_vox/vsr/self_large_vox_433h.pt) | [Linear](https://drive.google.com/file/d/1DNfJgyeLx9xet4DT5xZXyx8ZOcNoawL8/view?usp=drive_link)(~15.74M) | [vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | 29.47


## Data preparation
Follow the steps in [preparation](https://github.com/facebookresearch/av_hubert/tree/main/avhubert/preparation) of av_hubert to pre-process LRS3 dataset

## Environment
Use the specific fairseq version of [av_hubert](https://github.com/facebookresearch/av_hubert), which is compatible with hydra-core versions below 1.0.7 and omegaconf versions below 2.0.6.


## Decode with checkpoints
```
bash decode_avhubert_vo_vicuna_7b.sh
```
Modify the path including `speech_encoder_path`, `llm_path`, `output_dir`, `ckpt_path` and `decode_log` in the script when you run the shell script.

## Train a new model

### Use the visual part of AV-HuBERT Large as the encoder
```
bash finetune_avhubert_vo_vicuna_7b.sh
```


19 changes: 19 additions & 0 deletions examples/vsr_LRS3/conf/ds_config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-4
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
}
}
}
3 changes: 3 additions & 0 deletions examples/vsr_LRS3/conf/prompt.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
dataset_config:
# we put prompt here, because the hydra override in shell script only support a small subset of chars
prompt: "Transcribe the silent speech in this video to text by lip-reading the speaker's clear and visible lip movements."
45 changes: 45 additions & 0 deletions examples/vsr_LRS3/finetune_vsr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
from slam_llm.pipeline.finetune import main as train

import hydra
import logging
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf
from vsr_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig

@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})

@hydra.main(config_name=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
def to_plain_list(cfg_item):
if isinstance(cfg_item, ListConfig):
return OmegaConf.to_container(cfg_item, resolve=True)
elif isinstance(cfg_item, DictConfig):
return {k: to_plain_list(v) for k, v in cfg_item.items()}
else:
return cfg_item

# kwargs = to_plain_list(cfg)
kwargs = cfg
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())

logging.basicConfig(level=log_level)

if kwargs.get("debug", False):
import pdb;
pdb.set_trace()

train(kwargs)


if __name__ == "__main__":
main_hydra()
53 changes: 53 additions & 0 deletions examples/vsr_LRS3/inference_vsr_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
from slam_llm.pipeline.inference_batch import main as inference

import hydra
import logging
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing import Optional
from vsr_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig


@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})
decode_log: str = field(
default="output/decode_log",
metadata={"help": "The prefix for the decode output"},
)
ckpt_path: str = field(
default="output/model.pt", metadata={"help": "The path to projector checkpoint"}
)
peft_ckpt: Optional[str] = field(
default=None,
metadata={
"help": "The path to peft checkpoint, should be a directory including adapter_config.json"
},
)


@hydra.main(config_name=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
# kwargs = to_plain_list(cfg)
log_level = getattr(logging, cfg.get("log_level", "INFO").upper())

logging.basicConfig(level=log_level)

if cfg.get("debug", False):
import pdb

pdb.set_trace()

inference(cfg)


if __name__ == "__main__":
main_hydra()
Loading

0 comments on commit 211c2c2

Please sign in to comment.