PyTorch Lite plugin for Flutter.
End-to-end workflow from Training to Deployment for iOS and Android mobile devices.
There is a growing need to execute ML models on edge devices to reduce latency, preserve privacy, and enable new interactive use cases.
The PyTorch Mobile runtime beta release allows you to seamlessly go from training a model to deploying it, while staying entirely within the PyTorch ecosystem. It provides an end-to-end workflow that simplifies the research to production environment for mobile devices. In addition, it paves the way for privacy-preserving features via federated learning techniques.
PyTorch Mobile is in beta stage right now, and is already in wide scale production use. It will soon be available as a stable release once the APIs are locked down.
A simple image classification application that demonstrates how to use the flutter_pytorch_lite
plugin.
-
- minSdkVersion 21
-
- XCode 11.0 or above
- iOS 12.0 or above
In the dependency section of pubspec.yaml
file, add flutter_pytorch_lite
(adjust the version accordingly based on the latest release)
dependencies:
flutter_pytorch_lite: ^0.1.0+1
or
dependencies:
flutter_pytorch_lite:
git:
url: https://github.com/winfordguo/flutter_pytorch_lite.git
import 'package:flutter_pytorch_lite/flutter_pytorch_lite.dart';
-
Export
PyTorch
Module toTorchScript
forPyTorch Mobile
import torch from torch.utils.mobile_optimizer import optimize_for_mobile model = torch.load("your_model.pt", map_location="cpu") # load model.eval() ts = torch.jit.trace(model) # TorchScript optimize_for_mobile(ts)._save_for_lite_interpreter("your_model.ptl")
or
Use yolov5 export.py
git clone https://github.com/ultralytics/yolov5 # clone cd yolov5 pip install -r requirements.txt # install python export.py --weights yolov5s.pt --include torchscript --optimize mv yolov5s.torchscript yolov5s.ptl
-
From path
Module module = await FlutterPytorchLite.load('/path/to/your_model.ptl');
-
From asset
Place
your_model.ptl
inassets
directory. Make sure to include assets inpubspec.yaml
.final filePath = '${Directory.systemTemp.path}/your_model.ptl'; File(filePath).writeAsBytesSync(await _getBuffer('assets/your_model.ptl')); Module module = await FlutterPytorchLite.load(filePath); /// Get byte buffer static Future<Uint8List> _getBuffer(String assetFileName) async { ByteData rawAssetFile = await rootBundle.load(assetFileName); final rawBytes = rawAssetFile.buffer.asUint8List(); return rawBytes; }
-
For single input and output
Use Module's method
Future<IValue> forward(List<IValue> inputs)
.// For ex: if input tensor shape [1,5] and type is float32 final inputShape = Int64List.fromList([1, 5]); var input = [1.23, 6.54, 7.81, 3.21, 2.22]; Tensor inputTensor = Tensor.fromBlobFloat32(input, inputShape); // forward IValue input = IValue.from(inputTensor); IValue output = await module.forward([input]); Tensor outputTensor = output.toTensor(); // Get output tensor: if output tensor type is float32 final outputShape = outputTensor.shape; var output = outputTensor.dataAsFloat32List; // print the output print(output);
-
For image input
Use Module's method
Future<IValue> forward(List<IValue> inputs)
.const assetImage = AssetImage('assets/images/image.png'); final image = await TensorImageUtils.imageProviderToImage(assetImage); // For ex: yolov5.ptl input shape [1, 3, 640, 640] final inputShape = Int64List.fromList([1, 3, 640, 640]); // For ex: yolov5-cls.ptl input shape [1, 3, 224, 224] // final inputShape = Int64List.fromList([1, 3, 224, 224]); Tensor inputTensor = await TensorImageUtils.imageToFloat32Tensor( image, // image type is dart:ui.Image width: inputShape[3], height: inputShape[2], ); // forward IValue input = IValue.from(inputTensor); IValue output = await module.forward([input]); Tensor outputTensor = output.toTuple().first.toTensor(); // For ex: yolov5 object detection // Tensor outputTensor = output.toTensor(); // For ex: yolov5 classification // Get output tensor as float32 type final outputShape = outputTensor.shape; var output = outputTensor.dataAsFloat32List; // print the output print(output);
- Destroy the model
await module.destroy();
- For inputShape [1, 3, 224, 224]
// 1*channels*height*width Int64List inputShape = Int64List.fromList([1, 3, 224, 224]); Tensor tensor = await TensorImageUtils.imageToFloat32Tensor( image, // image type is dart:ui.Image width: inputShape[3], height: inputShape[2], // memoryFormat: MemoryFormat.contiguous, // default );
- For inputShape [1, 224, 224, 3]
// 1*height*width*channels Int64List inputShape = Int64List.fromList([1, 224, 224, 3]); Tensor tensor = await TensorImageUtils.imageToFloat32Tensor( image, // image type is dart:ui.Image width: inputShape[2], height: inputShape[1], memoryFormat: MemoryFormat.channelsLast, );
- For AssetImage
const assetImage = AssetImage('assets/images/image.png'); final image = await TensorImageUtils.imageProviderToImage(assetImage); // print the image width and height print('width: ${image.width}, height: ${image.height}');
- For NetworkImage
const networkImage = NetworkImage('https://example.com/image.png'); final image = await TensorImageUtils.imageProviderToImage(networkImage); // print the image width and height print('width: ${image.width}, height: ${image.height}');
-
Q: Execution failed for task ':app:mergeDebugNativeLibs'
* What went wrong: Execution failed for task ':app:mergeDebugNativeLibs'. > A failure occurred while executing com.android.build.gradle.internal.tasks.Workers$ActionFacade > More than one file was found with OS independent path 'lib/x86/libc++_shared.so'
A: add this to your
app/build.gradle
android { // your existing code packagingOptions { pickFirst '**/libc++_shared.so' } }
-
Q: What is the version of PyTorch Lite?
A:
org.pytorch:pytorch_android_lite:1.13.1
org.pytorch:pytorch_android_torchvision_lite:1.13.1
-
Q: What is the version of PyTorch Lite?
A:
'LibTorch-Lite', '~> 1.13.0.1'