Skip to content

wiredinhp/Machine_Learning_Task

Repository files navigation

Machine Learning Task (Regression model)

1)Linear Regression

We have been given two loss functions to analyse the linear regression model and further compare the two loss functions. Let's first look at the models using the two loss functions as their criterion and their various plots.

a)L3 function (mean cubic(absolute) loss)

Firstly let's have a look at our solution i.e. the plot showing aur linear regression model. Alt Text
We can see that the plot looks good and seems to fit the data. Now let's look at the plot of our loss function. Alt Text

b)L1 function (mean absolute loss)

Again let's have a look at our solution i.e. the plot showing aur linear regression model. Alt Text
We can see that the plot looks good and seems to fit the data. Now let's look at the plot of our loss function. Alt Text
We have worked on two loss functions - mean cubic error, mean absolute error. In mean cubic error if we have outliers in our data , our prediction is not quite correct because in a large set of data if a single large value exist it really does not affect the prediction but in case of mean cubic error the value is raised to power 3 so it disturbs the hypothesis. This issue is solved in mean absolute error because it would not drastically increase the value as in mean cubic error. Secondly, in mean absolute error the gradient is constant so when we reach the minimum value there is a chance that we jump up from minimum value (so i had taken very small alpha and adjusted iteration in order to get as close as possible). This issue is solved in mean cubic error because the gradient decreases as we get close to minimum so we can smoothly arrive at minimum value.
Hence mean absolute is more robust(for outliers) and the cubic one is more stable than absolute one.

2)Polynomial Regression (Second order)

As in first part here too we have been given two loss functions to analyse the linear regression model and further compare the two loss functions. Let's first look at the models using the two loss functions as their criterion and their various plots.

a)L4 function (power 4)

Firstly let's have a look at our solution i.e. the plot showing aur linear regression model. Alt Text
We can see that the plot looks good and seems to fit the data.

b)L7 function (power 7)

Again let's have a look at our solution i.e. the plot showing aur linear regression model. Alt Text
We can see that the plot looks good and seems to fit the data.
We have worked with 4 degree and 7 degree loss functions . As seen in Linear regression, here too - the 7 degree loss drastically increases the value in case of outliers as compared to 4 degree Polynomial. On the contrary the 7 degree polynomial is more smooth near the minima so we would get more close to minima as compared to 4 degree polynomial.
Hence the 4 degree loss is more robust(for outliers) and 7 degree loss is more stable than 4 degree loss.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published