Skip to content
forked from sinovation/ZEN

A BERT-based Chinese Text Encoder Enhanced by N-gram Representations

License

Notifications You must be signed in to change notification settings

wj573510848/ZEN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ZEN

ZEN is a BERT-based Chinese (Z) text encoder Enhanced by N-gram representations, where different combinations of characters are considered during training. The potential word or phrase boundaries are explicitly pre-trained and fine-tuned with the character encoder (BERT), so that ZEN incorporates the comprehensive information of both the character sequence and words or phrases it contains. The structure of ZEN is illustrated in the figure below.

 

ZEN_model

 

Citation

If you use or extend our work, please cite the following paper:

@article{Sinovation2019ZEN,
  title="{ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations}",
  author={Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, Yonggang Wang},
  journal={ArXiv},
  year={2019},
  volume={abs/1911.00720}
}

Quick tour of pre-training and fine-tune using ZEN

The library comprises several example scripts for conducting Chinese NLP tasks:

  • run_pre_train.py: an example pre-training ZEN
  • run_sequence_level_classification.py: an example fine-tuning ZEN on DC, SA, SPM and NLI tasks (sequence-level classification)
  • run_token_level_classification.py: an example fine-tuning ZEN on CWS, POS and NER tasks (token-level classification)

Examples of pre-training and fine-tune using ZEN.

Contact information

For help or issues using ZEN, please submit a GitHub issue.

For personal communication related to ZEN, please contact chenguimin([email protected]).

About

A BERT-based Chinese Text Encoder Enhanced by N-gram Representations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%