https://arxiv.org/abs/1807.03247
- coordconv : 좌표정보를 input에 concat 시켜 추가하고 conv 연산을 수행해 모델이 좌표정보 또한 학습하게끔 만듬
- input에 nomalization한 좌표정보 i,j를 concat
https://arxiv.org/abs/1904.09106
- propose an automated segmentation of pulmonary lobes using coordination-guided deep neural networks from chest CT images
- 343 chest CT scans
- size : 256×256×128
- target : five target lobar classes
- fully end-to-end 3D deep learning approach
- unet 구조와 유사한데 큰 차이점은 skip connection 사용
- coordconv 적용 : last transition in the decoding path
- pt가 클 경우 상대적으로 loss가 pt가 적을 때 보다 크게 감소
- 따라서 상대적으로 잘 분류되지 못한 cls에 집중함
https://arxiv.org/abs/1810.07842
- a novel focal Tversky loss function for highly imbalanced data and small ROI segmentation
- a deeply supervised attention U-Net improved with a multiscaled input image pyramid for better intermediate feature representations.
-
1.Breast Ultrasound Lesions 2017 dataset B (BUS)
- 163 ultrasound images of breast lesions from different women
- average image size is 760 x 570 pixels(resampled to 128 x 128 pixels)
- a 75-25 train-test split
-
2.ISIC 2018 skin lesion dataset
- 2,594 RGB images of skin lesion
- image size of 2166 x 3188 pixels(resampled to 192 x 256 pixels)
- 75-25 train-test split
- The Tversky index is adapted to a loss function (TL)
* pic : probability that pixel i is of the lesion class c
* pic-: probability pixel i is of the non-lesion class c¯
* same is true for gic and gic¯
* α,β 는 하이퍼파라미터
- attention gate
- multi scale : avg pooling을 이용해 각 stage의 input으로 추가로 넣어줌
- deep supervision