forked from udlbook/udlbook
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Revert "Remove duplicate weight initialization"
This reverts commit 87cf590.
- Loading branch information
1 parent
87cf590
commit 305a055
Showing
1 changed file
with
95 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,20 +1,32 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [], | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"colab_type": "text", | ||
"id": "view-in-github" | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/udlbook/udlbook/blob/main/Notebooks/Chap09/9_5_Augmentation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "el8l05WQEO46" | ||
}, | ||
"source": [ | ||
"# **Notebook 9.5: Augmentation**\n", | ||
"\n", | ||
|
@@ -23,27 +35,25 @@ | |
"Work through the cells below, running each cell in turn. In various places you will see the words \"TO DO\". Follow the instructions at these places and make predictions about what is going to happen or write code to complete the functions.\n", | ||
"\n", | ||
"Contact me at [email protected] if you find any mistakes or have any suggestions.\n" | ||
] | ||
], | ||
"metadata": { | ||
"id": "el8l05WQEO46" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "syvgxgRr3myY" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Run this if you're in a Colab to install MNIST 1D repository\n", | ||
"!pip install git+https://github.com/greydanus/mnist1d" | ||
] | ||
], | ||
"metadata": { | ||
"id": "syvgxgRr3myY" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "ckrNsYd13pMe" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch, torch.nn as nn\n", | ||
"from torch.utils.data import TensorDataset, DataLoader\n", | ||
|
@@ -52,15 +62,15 @@ | |
"import matplotlib.pyplot as plt\n", | ||
"import mnist1d\n", | ||
"import random" | ||
] | ||
], | ||
"metadata": { | ||
"id": "ckrNsYd13pMe" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "D_Woo9U730lZ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"args = mnist1d.data.get_dataset_args()\n", | ||
"data = mnist1d.data.get_dataset(args, path='./mnist1d_data.pkl', download=False, regenerate=False)\n", | ||
|
@@ -70,15 +80,15 @@ | |
"print(\"Examples in training set: {}\".format(len(data['y'])))\n", | ||
"print(\"Examples in test set: {}\".format(len(data['y_test'])))\n", | ||
"print(\"Length of each example: {}\".format(data['x'].shape[-1]))" | ||
] | ||
], | ||
"metadata": { | ||
"id": "D_Woo9U730lZ" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "JfIFWFIL33eF" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"D_i = 40 # Input dimensions\n", | ||
"D_k = 200 # Hidden dimensions\n", | ||
|
@@ -99,17 +109,17 @@ | |
" nn.init.kaiming_uniform_(layer_in.weight)\n", | ||
" layer_in.bias.data.fill_(0.0)\n", | ||
"\n", | ||
"# Initialize model weights\n", | ||
"# Call the function you just defined\n", | ||
"model.apply(weights_init)" | ||
] | ||
], | ||
"metadata": { | ||
"id": "JfIFWFIL33eF" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "YFfVbTPE4BkJ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# choose cross entropy loss function (equation 5.24)\n", | ||
"loss_function = torch.nn.CrossEntropyLoss()\n", | ||
|
@@ -126,6 +136,9 @@ | |
"# load the data into a class that creates the batches\n", | ||
"data_loader = DataLoader(TensorDataset(x_train,y_train), batch_size=100, shuffle=True, worker_init_fn=np.random.seed(1))\n", | ||
"\n", | ||
"# Initialize model weights\n", | ||
"model.apply(weights_init)\n", | ||
"\n", | ||
"# loop over the dataset n_epoch times\n", | ||
"n_epoch = 50\n", | ||
"# store the loss and the % correct at each epoch\n", | ||
|
@@ -156,15 +169,15 @@ | |
" errors_train[epoch] = 100 - 100 * (predicted_train_class == y_train).float().sum() / len(y_train)\n", | ||
" errors_test[epoch]= 100 - 100 * (predicted_test_class == y_test).float().sum() / len(y_test)\n", | ||
" print(f'Epoch {epoch:5d}, train error {errors_train[epoch]:3.2f}, test error {errors_test[epoch]:3.2f}')" | ||
] | ||
], | ||
"metadata": { | ||
"id": "YFfVbTPE4BkJ" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "FmGDd4vB8LyM" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Plot the results\n", | ||
"fig, ax = plt.subplots()\n", | ||
|
@@ -175,24 +188,24 @@ | |
"ax.set_title('Train Error %3.2f, Test Error %3.2f'%(errors_train[-1],errors_test[-1]))\n", | ||
"ax.legend()\n", | ||
"plt.show()" | ||
] | ||
], | ||
"metadata": { | ||
"id": "FmGDd4vB8LyM" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "55XvoPDO8Qp-" | ||
}, | ||
"source": [ | ||
"The best test performance is about 33%. Let's see if we can improve on that by augmenting the data." | ||
] | ||
], | ||
"metadata": { | ||
"id": "55XvoPDO8Qp-" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "IP6z2iox8MOF" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def augment(input_vector):\n", | ||
" # Create output vector\n", | ||
|
@@ -208,15 +221,15 @@ | |
" data_out = np.array(data_out)\n", | ||
"\n", | ||
" return data_out" | ||
] | ||
], | ||
"metadata": { | ||
"id": "IP6z2iox8MOF" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "bzN0lu5J95AJ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"n_data_orig = data['x'].shape[0]\n", | ||
"# We'll double the amount of data\n", | ||
|
@@ -234,15 +247,15 @@ | |
" # Augment the point and store\n", | ||
" augmented_x[c_augment,:] = augment(data['x'][random_data_index,:])\n", | ||
" augmented_y[c_augment] = data['y'][random_data_index]\n" | ||
] | ||
], | ||
"metadata": { | ||
"id": "bzN0lu5J95AJ" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "hZUNrXpS_kRs" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# choose cross entropy loss function (equation 5.24)\n", | ||
"loss_function = torch.nn.CrossEntropyLoss()\n", | ||
|
@@ -292,15 +305,15 @@ | |
" errors_train_aug[epoch] = 100 - 100 * (predicted_train_class == y_train).float().sum() / len(y_train)\n", | ||
" errors_test_aug[epoch]= 100 - 100 * (predicted_test_class == y_test).float().sum() / len(y_test)\n", | ||
" print(f'Epoch {epoch:5d}, train error {errors_train_aug[epoch]:3.2f}, test error {errors_test_aug[epoch]:3.2f}')" | ||
] | ||
], | ||
"metadata": { | ||
"id": "hZUNrXpS_kRs" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "IcnAW4ixBnuc" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Plot the results\n", | ||
"fig, ax = plt.subplots()\n", | ||
|
@@ -312,31 +325,21 @@ | |
"ax.set_title('TrainError %3.2f, Test Error %3.2f'%(errors_train_aug[-1],errors_test_aug[-1]))\n", | ||
"ax.legend()\n", | ||
"plt.show()" | ||
] | ||
], | ||
"metadata": { | ||
"id": "IcnAW4ixBnuc" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "jgsR7ScJHc9b" | ||
}, | ||
"source": [ | ||
"Hopefully, you should see an improvement in performance when we augment the data." | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"include_colab_link": true, | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
], | ||
"metadata": { | ||
"id": "jgsR7ScJHc9b" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} | ||
] | ||
} |