forked from THUDM/ChatGLM2-6B
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
71 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
首先从 [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/e84444333b6d434ea7b0) 下载处理好的 C-Eval 数据集,解压到 `evaluation` 目录下。然后运行 | ||
|
||
```shell | ||
cd evaluation | ||
python evaluate_ceval.py | ||
``` | ||
|
||
这个脚本会在C-Eval的验证集上进行预测并输出准确率。如果想要得到测试集上的结果可以将代码中的 `./CEval/val/**/*.jsonl` 改为 `./CEval/test/**/*.jsonl`,并按照 C-Eval 规定的格式保存结果并在 [官网](https://cevalbenchmark.com/) 上提交。 | ||
|
||
汇报的结果使用的是内部的并行测试框架,结果可能会有轻微波动。 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import os | ||
import glob | ||
import re | ||
import json | ||
import torch | ||
import torch.utils.data | ||
from transformers import AutoTokenizer, AutoModel | ||
from tqdm import tqdm | ||
|
||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True) | ||
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).bfloat16().cuda() | ||
|
||
choices = ["A", "B", "C", "D"] | ||
choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in choices] | ||
|
||
|
||
def build_prompt(text): | ||
return "[Round {}]\n\n问:{}\n\n答:".format(1, text) | ||
|
||
|
||
extraction_prompt = '综上所述,ABCD中正确的选项是:' | ||
|
||
accuracy_dict, count_dict = {}, {} | ||
with torch.no_grad(): | ||
for entry in glob.glob("./CEval/val/**/*.jsonl", recursive=True): | ||
dataset = [] | ||
with open(entry, encoding='utf-8') as file: | ||
for line in file: | ||
dataset.append(json.loads(line)) | ||
correct = 0 | ||
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) | ||
for batch in tqdm(dataloader): | ||
texts = batch["inputs_pretokenized"] | ||
queries = [build_prompt(query) for query in texts] | ||
inputs = tokenizer(queries, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') | ||
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=512) | ||
intermediate_outputs = [] | ||
for idx in range(len(outputs)): | ||
output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):] | ||
response = tokenizer.decode(output) | ||
intermediate_outputs.append(response) | ||
answer_texts = [text + intermediate + "\n" + extraction_prompt for text, intermediate in | ||
zip(texts, intermediate_outputs)] | ||
input_tokens = [build_prompt(answer_text) for answer_text in answer_texts] | ||
inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda') | ||
outputs = model(**inputs, return_last_logit=True) | ||
logits = outputs.logits[:, -1] | ||
logits = logits[:, choice_tokens] | ||
preds = logits.argmax(dim=-1) | ||
correct += (preds.cpu() == batch["label"]).sum().item() | ||
accuracy = correct / len(dataset) | ||
print(entry, accuracy) | ||
accuracy_dict[entry] = accuracy | ||
count_dict[entry] = len(dataset) | ||
|
||
acc_total, count_total = 0.0, 0 | ||
for key in accuracy_dict: | ||
acc_total += accuracy_dict[key] * count_dict[key] | ||
count_total += count_dict[key] | ||
print(acc_total / count_total) |