Skip to content

Commit

Permalink
llama : add qwen2moe (llama/6074)
Browse files Browse the repository at this point in the history
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <[email protected]>
  • Loading branch information
simonJJJ and ggerganov committed May 13, 2024
1 parent 98c0b77 commit fdb2c87
Show file tree
Hide file tree
Showing 2 changed files with 68 additions and 15 deletions.
57 changes: 42 additions & 15 deletions ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,11 @@
GGML_METAL_KERNEL_TYPE_RELU,
GGML_METAL_KERNEL_TYPE_SIGMOID,
GGML_METAL_KERNEL_TYPE_GELU,
GGML_METAL_KERNEL_TYPE_GELU_4,
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
GGML_METAL_KERNEL_TYPE_SILU,
GGML_METAL_KERNEL_TYPE_SILU_4,
GGML_METAL_KERNEL_TYPE_SOFT_MAX,
GGML_METAL_KERNEL_TYPE_SOFT_MAX_4,
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
Expand Down Expand Up @@ -475,8 +478,11 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
Expand Down Expand Up @@ -1181,6 +1187,9 @@ static enum ggml_status ggml_metal_graph_compute(
} break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
// we are not taking into account the strides, so for now require contiguous tensors
GGML_ASSERT(ggml_is_contiguous(src0));

case GGML_UNARY_OP_TANH:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
Expand Down Expand Up @@ -1219,42 +1228,60 @@ static enum ggml_status ggml_metal_graph_compute(
} break;
case GGML_UNARY_OP_GELU:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
int64_t n = ggml_nelements(dst);

id<MTLComputePipelineState> pipeline = nil;

if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
}

[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];

const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);

[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
int64_t n = ggml_nelements(dst);

id<MTLComputePipelineState> pipeline = nil;

if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
}

[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];

const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);

[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_SILU:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
int64_t n = ggml_nelements(dst);

id<MTLComputePipelineState> pipeline = nil;

if (n % 4 == 0) {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
n /= 4;
} else {
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
}

[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];

const int64_t n = ggml_nelements(dst);
GGML_ASSERT(n % 4 == 0);

[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
Expand Down
26 changes: 26 additions & 0 deletions ggml-metal.metal
Original file line number Diff line number Diff line change
Expand Up @@ -249,6 +249,15 @@ constant float GELU_QUICK_COEF = -1.702f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;

kernel void kernel_gelu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];

dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}

kernel void kernel_gelu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
Expand All @@ -262,6 +271,15 @@ kernel void kernel_gelu(
}

kernel void kernel_gelu_quick(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];

dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}

kernel void kernel_gelu_quick_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
Expand All @@ -271,6 +289,14 @@ kernel void kernel_gelu_quick(
}

kernel void kernel_silu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
device const float & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}

+kernel void kernel_silu_4(
device const float4 * src0,
device float4 * dst,
uint tpig[[thread_position_in_grid]]) {
Expand Down

0 comments on commit fdb2c87

Please sign in to comment.