forked from jorgecasas/php-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LogisticRegression classifier & Optimization methods (#63)
* LogisticRegression classifier & Optimization methods * Minor fixes to Logistic Regression & Optimizers PR * Addition for getCostValues() method
- Loading branch information
1 parent
c44f3b2
commit 4923442
Showing
10 changed files
with
1,161 additions
and
151 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace Phpml\Classification\Linear; | ||
|
||
use Phpml\Classification\Classifier; | ||
use Phpml\Helper\Optimizer\ConjugateGradient; | ||
|
||
class LogisticRegression extends Adaline | ||
{ | ||
|
||
/** | ||
* Batch training: Gradient descent algorithm (default) | ||
*/ | ||
const BATCH_TRAINING = 1; | ||
|
||
/** | ||
* Online training: Stochastic gradient descent learning | ||
*/ | ||
const ONLINE_TRAINING = 2; | ||
|
||
/** | ||
* Conjugate Batch: Conjugate Gradient algorithm | ||
*/ | ||
const CONJUGATE_GRAD_TRAINING = 3; | ||
|
||
/** | ||
* Cost function to optimize: 'log' and 'sse' are supported <br> | ||
* - 'log' : log likelihood <br> | ||
* - 'sse' : sum of squared errors <br> | ||
* | ||
* @var string | ||
*/ | ||
protected $costFunction = 'sse'; | ||
|
||
/** | ||
* Regularization term: only 'L2' is supported | ||
* | ||
* @var string | ||
*/ | ||
protected $penalty = 'L2'; | ||
|
||
/** | ||
* Lambda (λ) parameter of regularization term. If λ is set to 0, then | ||
* regularization term is cancelled. | ||
* | ||
* @var float | ||
*/ | ||
protected $lambda = 0.5; | ||
|
||
/** | ||
* Initalize a Logistic Regression classifier with maximum number of iterations | ||
* and learning rule to be applied <br> | ||
* | ||
* Maximum number of iterations can be an integer value greater than 0 <br> | ||
* If normalizeInputs is set to true, then every input given to the algorithm will be standardized | ||
* by use of standard deviation and mean calculation <br> | ||
* | ||
* Cost function can be 'log' for log-likelihood and 'sse' for sum of squared errors <br> | ||
* | ||
* Penalty (Regularization term) can be 'L2' or empty string to cancel penalty term | ||
* | ||
* @param int $maxIterations | ||
* @param bool $normalizeInputs | ||
* @param int $trainingType | ||
* @param string $cost | ||
* @param string $penalty | ||
* | ||
* @throws \Exception | ||
*/ | ||
public function __construct(int $maxIterations = 500, bool $normalizeInputs = true, | ||
int $trainingType = self::CONJUGATE_GRAD_TRAINING, string $cost = 'sse', | ||
string $penalty = 'L2') | ||
{ | ||
$trainingTypes = range(self::BATCH_TRAINING, self::CONJUGATE_GRAD_TRAINING); | ||
if (! in_array($trainingType, $trainingTypes)) { | ||
throw new \Exception("Logistic regression can only be trained with " . | ||
"batch (gradient descent), online (stochastic gradient descent) " . | ||
"or conjugate batch (conjugate gradients) algorithms"); | ||
} | ||
|
||
if (! in_array($cost, ['log', 'sse'])) { | ||
throw new \Exception("Logistic regression cost function can be one of the following: \n" . | ||
"'log' for log-likelihood and 'sse' for sum of squared errors"); | ||
} | ||
|
||
if ($penalty != '' && strtoupper($penalty) !== 'L2') { | ||
throw new \Exception("Logistic regression supports only 'L2' regularization"); | ||
} | ||
|
||
$this->learningRate = 0.001; | ||
|
||
parent::__construct($this->learningRate, $maxIterations, $normalizeInputs); | ||
|
||
$this->trainingType = $trainingType; | ||
$this->costFunction = $cost; | ||
$this->penalty = $penalty; | ||
} | ||
|
||
/** | ||
* Sets the learning rate if gradient descent algorithm is | ||
* selected for training | ||
* | ||
* @param float $learningRate | ||
*/ | ||
public function setLearningRate(float $learningRate) | ||
{ | ||
$this->learningRate = $learningRate; | ||
} | ||
|
||
/** | ||
* Lambda (λ) parameter of regularization term. If 0 is given, | ||
* then the regularization term is cancelled | ||
* | ||
* @param float $lambda | ||
*/ | ||
public function setLambda(float $lambda) | ||
{ | ||
$this->lambda = $lambda; | ||
} | ||
|
||
/** | ||
* Adapts the weights with respect to given samples and targets | ||
* by use of selected solver | ||
*/ | ||
protected function runTraining() | ||
{ | ||
$callback = $this->getCostFunction(); | ||
|
||
switch ($this->trainingType) { | ||
case self::BATCH_TRAINING: | ||
return $this->runGradientDescent($callback, true); | ||
|
||
case self::ONLINE_TRAINING: | ||
return $this->runGradientDescent($callback, false); | ||
|
||
case self::CONJUGATE_GRAD_TRAINING: | ||
return $this->runConjugateGradient($callback); | ||
} | ||
} | ||
|
||
/** | ||
* Executes Conjugate Gradient method to optimize the | ||
* weights of the LogReg model | ||
*/ | ||
protected function runConjugateGradient(\Closure $gradientFunc) | ||
{ | ||
$optimizer = (new ConjugateGradient($this->featureCount)) | ||
->setMaxIterations($this->maxIterations); | ||
|
||
$this->weights = $optimizer->runOptimization($this->samples, $this->targets, $gradientFunc); | ||
$this->costValues = $optimizer->getCostValues(); | ||
} | ||
|
||
/** | ||
* Returns the appropriate callback function for the selected cost function | ||
* | ||
* @return \Closure | ||
*/ | ||
protected function getCostFunction() | ||
{ | ||
$penalty = 0; | ||
if ($this->penalty == 'L2') { | ||
$penalty = $this->lambda; | ||
} | ||
|
||
switch ($this->costFunction) { | ||
case 'log': | ||
/* | ||
* Negative of Log-likelihood cost function to be minimized: | ||
* J(x) = ∑( - y . log(h(x)) - (1 - y) . log(1 - h(x))) | ||
* | ||
* If regularization term is given, then it will be added to the cost: | ||
* for L2 : J(x) = J(x) + λ/m . w | ||
* | ||
* The gradient of the cost function to be used with gradient descent: | ||
* ∇J(x) = -(y - h(x)) = (h(x) - y) | ||
*/ | ||
$callback = function ($weights, $sample, $y) use ($penalty) { | ||
$this->weights = $weights; | ||
$hX = $this->output($sample); | ||
|
||
// In cases where $hX = 1 or $hX = 0, the log-likelihood | ||
// value will give a NaN, so we fix these values | ||
if ($hX == 1) { | ||
$hX = 1 - 1e-10; | ||
} | ||
if ($hX == 0) { | ||
$hX = 1e-10; | ||
} | ||
$error = -$y * log($hX) - (1 - $y) * log(1 - $hX); | ||
$gradient = $hX - $y; | ||
|
||
return [$error, $gradient, $penalty]; | ||
}; | ||
|
||
return $callback; | ||
|
||
case 'sse': | ||
/** | ||
* Sum of squared errors or least squared errors cost function: | ||
* J(x) = ∑ (y - h(x))^2 | ||
* | ||
* If regularization term is given, then it will be added to the cost: | ||
* for L2 : J(x) = J(x) + λ/m . w | ||
* | ||
* The gradient of the cost function: | ||
* ∇J(x) = -(h(x) - y) . h(x) . (1 - h(x)) | ||
*/ | ||
$callback = function ($weights, $sample, $y) use ($penalty) { | ||
$this->weights = $weights; | ||
$hX = $this->output($sample); | ||
|
||
$error = ($y - $hX) ** 2; | ||
$gradient = -($y - $hX) * $hX * (1 - $hX); | ||
|
||
return [$error, $gradient, $penalty]; | ||
}; | ||
|
||
return $callback; | ||
} | ||
} | ||
|
||
/** | ||
* Returns the output of the network, a float value between 0.0 and 1.0 | ||
* | ||
* @param array $sample | ||
* | ||
* @return float | ||
*/ | ||
protected function output(array $sample) | ||
{ | ||
$sum = parent::output($sample); | ||
|
||
return 1.0 / (1.0 + exp(-$sum)); | ||
} | ||
|
||
/** | ||
* Returns the class value (either -1 or 1) for the given input | ||
* | ||
* @param array $sample | ||
* @return int | ||
*/ | ||
protected function outputClass(array $sample) | ||
{ | ||
$output = $this->output($sample); | ||
|
||
if (round($output) > 0.5) { | ||
return 1; | ||
} | ||
|
||
return -1; | ||
} | ||
|
||
/** | ||
* Returns the probability of the sample of belonging to the given label. | ||
* | ||
* The probability is simply taken as the distance of the sample | ||
* to the decision plane. | ||
* | ||
* @param array $sample | ||
* @param mixed $label | ||
*/ | ||
protected function predictProbability(array $sample, $label) | ||
{ | ||
$predicted = $this->predictSampleBinary($sample); | ||
|
||
if (strval($predicted) == strval($label)) { | ||
$sample = $this->checkNormalizedSample($sample); | ||
return abs($this->output($sample) - 0.5); | ||
} | ||
|
||
return 0.0; | ||
} | ||
} |
Oops, something went wrong.