Skip to content

wycharry/TextBoxes-TensorFlow

 
 

Repository files navigation

TextBoxes-TensorFlow

TextBoxes re-implementation using tensorflow. Much more info can be found in Textbox and SSD This project is greatly inspired by slim project
And many functions are modified based on SSD-tensorflow project
Now the pipeline is much clear and can be resued in any tf projects.

Author: Daitao Xing : [email protected] Jin Huang : [email protected]

Result

For now, the model can detect most of boxes. But still has poor performance on small objects.

imag_1 imag_2

Train

Data preparation

  1. download the sythtext data from link
  2. Unzip the datasets and put all folders and files under /data/sythtext/
  3. cd datasets and run script python data2record.py
  4. The ICDAR2013 datasets follow the same pipeline.

Train from scratch

You can train this model from scratch by using following command.

DATASET_DIR=./data/sythtext/
TRAIN_DIR=./logs/train
CUDA_VISIBLE_DEVICES=0,1,2,3 setsid python Textbox_train.py \
	--train_dir=${TRAIN_DIR} \
	--dataset_dir=${DATASET_DIR} \
	--save_summaries_secs=60 \
	--save_interval_secs=1800 \
	--weight_decay=0.0005 \
	--optimizer=momentum \
	--learning_rate=0.001 \
	--batch_size=8 \
	--num_samples=800000 \
	--gpu_memory_fraction=0.95 \
	--max_number_of_steps=500000 \
    --use_batch=False \
	--num_clones=4 \

Train form checkpoint file

You can download vgg checkpoint from web and put it under checkpoints folder. To train the model from checkpoint(suggested), please run the following lines

# or change into your checkpoint file name
CHECKPOINT_PATH=./checkpoints/vgg_16.ckpt 
DATASET_DIR=./data/sythtext/
TRAIN_DIR=./logs/train
CUDA_VISIBLE_DEVICES=0,1,2,3 setsid python Textbox_train.py \
	--train_dir=${TRAIN_DIR} \
	--dataset_dir=${DATASET_DIR} \
	--save_summaries_secs=60 \
	--save_interval_secs=1800 \
	--weight_decay=0.0005 \
	--learning_rate=0.001 \
	--batch_size=8 \
	--num_samples=800000 \
	--gpu_memory_fraction=0.42 \
	--max_number_of_steps=500000 \
    --use_batch=False \
	--num_clones=4 \
	--checkpoint_path=${CHECKPOINT_PATH} \
    --checkpoint_model_scope=vgg_16 \
    --ignore_missing_vars=True \

Evalation on checkpoint

CHECKPOINT_PATH=./logs/train/logs614
EVAL_DIR=./logs/eval/logs614
DATASET_DIR=./data/ICDAR2013/test
CUDA_VISIBLE_DEVICES=4 setsid python eval.py \
    --eval_dir=${EVAL_DIR} \
    --dataset_dir=${DATASET_DIR} \
    --checkpoint_path=${CHECKPOINT_PATH} \
    --wait_for_checkpoints=True \
    --batch_size=1 \
    --gpu_memory_fraction=0.02 \
    --use_batch=False \

Further instruction

For further instruction on how to use slim. please check on slim project.

Problems to be solved:

  1. Anchor boxes size is very important. Many small objects can't be matched with any anchor boxes. This is a drawback of SSD.
  2. BatchNorm help a lot. Batch norm will imporove accurary by 5-10% percentage.
  3. Tensorflow is ineffecient compared with Caffe. For now this pipiline is under optimization. The speed is about 3 sec/step on sigle gpu(K80) where batch size is 32.
  4. Training as long as you can. I can't reproduce the result from scratch with only training 50K times. The result above is the result training after 150K

About

TextBoxes re-implement using tensorflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 96.5%
  • Python 3.3%
  • Shell 0.2%