Skip to content

[IEEE TGRS 2024] SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection

Notifications You must be signed in to change notification settings

xdFai/SCTransNet

Repository files navigation

SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection [Paper] [Weight]

Shuai Yuan, Hanlin Qin, Xiang Yan, Naveed Akhtar, Aimal Main, IEEE Transactions on Geoscience and Remote Sensing 2024.

SCTransNet 是PRCV 2024、ICPR 2024 Track 1、ICPR 2024 Track 2 三项比赛冠军方案的 Baseline, 同时也是多个优胜算法的Baselines. [Paper]

Bilibili 视频分享

https://www.bilibili.com/video/BV1kr421M7wx/

极市平台 推文分享

https://mp.weixin.qq.com/s/H7KLmtFX7j09f-Xc6X1FRw

If the implementation of this repo is helpful to you, just star it!⭐⭐⭐

Chanlleges and inspiration

Image text

Structure

Image text

Image text

Introduction

We present a Spatial-channel Cross Transformer Network (SCTransNet) to the IRSTD task. Experiments on both public (e.g., SIRST, NUDT-SIRST, IRSTD-1K) demonstrate the effectiveness of our method. Our main contributions are as follows:

  1. We propose SCTransNet, leveraging spatial-channel cross transformer blocks (SCTB) to predict the context of targets and backgrounds in the deeper network layers.

  2. A spatial-embedded single-head channel-cross attention (SSCA) module is utilized to foster semantic interactions across all feature levels and learn the long-range context.

  3. We devise a novel complementary feed-forward network (CFN) by crossing spatial-channel information to enhance the semantic difference between the target and background.

Usage

1. Data

  • Our project has the following structure:
    ├──./datasets/
    │    ├── IRSTD-1K
    │    │    ├── images
    │    │    │    ├── XDU0.png
    │    │    │    ├── XDU1.png
    │    │    │    ├── ...
    │    │    ├── masks
    │    │    │    ├── XDU0.png
    │    │    │    ├── XDU1.png
    │    │    │    ├── ...
    │    │    ├── img_idx
    │    │    │    ├── train_IRSTD-1K.txt
    │    │    │    ├── test_IRSTD-1K.txt
    │    ├── NUDT-SIRST
    │    │    ├── images
    │    │    │    ├── 000001.png
    │    │    │    ├── 000002.png
    │    │    │    ├── ...
    │    │    ├── masks
    │    │    │    ├── 000001.png
    │    │    │    ├── 000002.png
    │    │    │    ├── ...
    │    │    ├── img_idx
    │    │    │    ├── train_NUDT-SIRST.txt
    │    │    │    ├── test_NUDT-SIRST.txt
    │    ├── ...
    │    ├── ...
    │    ├── SIRST3
    │    │    ├── images
    │    │    │    ├── XDU0.png
    │    │    │    ├── XDU1.png
    │    │    │    ├── ...
    │    │    ├── masks
    │    │    │    ├── XDU0.png
    │    │    │    ├── XDU1.png
    │    │    │    ├── ...
    │    │    ├── img_idx
    │    │    │    ├── train_SIRST3.txt
    │    │    │    ├── test_SIRST3.txt
    
    
2. Train.
python train.py

3. Test and demo.

python test.py

Results and Trained Models

Qualitative Results

Image text

Quantitative Results on Mixed SIRST, NUDT-SIRST, and IRSTD-1K. i.e, one weight for three Datasets.

Model mIoU (x10(-2)) nIoU (x10(-2)) F-measure (x10(-2)) Pd (x10(-2)) Fa (x10(-6))
SIRST 77.50 81.08 87.32 96.95 13.92
NUDT-SIRST 94.09 94.38 96.95 98.62 4.29
IRSTD-1K 68.03 68.15 80.96 93.27 10.74
[Weights]

*This code is highly borrowed from IRSTD-Toolbox. Thanks to Xinyi Ying.

*This code is highly borrowed from UCTransNet. Thanks to Haonan Wang.

*The overall repository style is highly borrowed from DNA-Net. Thanks to Boyang Li.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@ARTICLE{10486932,
  author={Yuan, Shuai and Qin, Hanlin and Yan, Xiang and Akhtar, Naveed and Mian, Ajmal},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={SCTransNet: Spatial-Channel Cross Transformer Network for Infrared Small Target Detection}, 
  year={2024},
  volume={62},
  number={},
  pages={1-15},
  keywords={Semantics;Transformers;Decoding;Feature extraction;Task analysis;Object detection;Visualization;Convolutional neural network (CNN);cross-attention;deep learning;infrared small target detection (IRSTD);transformer},
  doi={10.1109/TGRS.2024.3383649}}

Contact

Welcome to raise issues or email to [email protected] or [email protected] for any question regarding our SCTransNet.

About

[IEEE TGRS 2024] SCTransNet: Spatial-channel Cross Transformer Network for Infrared Small Target Detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages