本项目是基于PaddlePaddle的DeepSpeech 项目开发的,做了较大的修改,方便训练中文自定义数据集,同时也方便测试和使用。DeepSpeech2是基于PaddlePaddle实现的端到端自动语音识别(ASR)引擎,其论文为《Baidu's Deep Speech 2 paper》 ,本项目同时还支持各种数据增强方法,以适应不同的使用场景。支持在Windows,Linux下训练和预测,支持Nvidia Jetson等开发板推理预测,该分支为新版本,如果要使用旧版本,请查看release/1.0分支。
本项目使用的环境:
- Python 3.7
- PaddlePaddle 2.1.2
- Windows or Ubuntu
- 2021.11.09: 提供WenetSpeech数据集制作脚本。
- 2021.09.05: 提供GUI界面识别部署。
- 2021.09.04: 提供三个公开数据的预训练模型。
- 2021.08.30: 支持中文数字转阿拉伯数字,具体请看预测文档。
- 2021.08.29: 完成训练代码和预测代码,同时完善相关文档。
- 2021.08.07: 支持导出预测模型,使用预测模型进行推理。使用webrtcvad工具,实现长语音识别。
- 2021.08.06: 将项目大部分的代码修改为PaddlePaddle2.0之后的新API。
数据集 | 卷积层数量 | 循环神经网络的数量 | 循环神经网络的大小 | 测试集字错率 | 下载地址 |
---|---|---|---|---|---|
aishell(179小时) | 2 | 3 | 1024 | 0.084532 | 点击下载 |
free_st_chinese_mandarin_corpus(109小时) | 2 | 3 | 1024 | 0.170260 | 点击下载 |
thchs_30(34小时) | 2 | 3 | 1024 | 0.026838 | 点击下载 |
超大数据集(1600多小时真实数据)+(1300多小时合成数据) | 2 | 3 | 1024 | 训练中 | 训练中 |
说明: 这里提供的是训练参数,如果要用于预测,还需要执行导出模型,使用的解码方法是集束搜索。
有问题欢迎提 issue 交流
python infer_path.py --wav_path=./dataset/test.wav
输出结果:
----------- Configuration Arguments -----------
alpha: 1.2
beam_size: 10
beta: 0.35
cutoff_prob: 1.0
cutoff_top_n: 40
decoding_method: ctc_greedy
enable_mkldnn: False
is_long_audio: False
lang_model_path: ./lm/zh_giga.no_cna_cmn.prune01244.klm
mean_std_path: ./dataset/mean_std.npz
model_dir: ./models/infer/
to_an: True
use_gpu: True
use_tensorrt: False
vocab_path: ./dataset/zh_vocab.txt
wav_path: ./dataset/test.wav
------------------------------------------------
消耗时间:132, 识别结果: 近几年不但我用书给女儿儿压岁也劝说亲朋不要给女儿压岁钱而改送压岁书, 得分: 94
- 长语音预测
python infer_path.py --wav_path=./dataset/test_vad.wav --is_long_audio=True
- Web部署
- GUI界面部署
- 基于PaddlePaddle实现的声纹识别:VoiceprintRecognition-PaddlePaddle
- 基于PaddlePaddle动态图实现的语音识别:PPASR
- 基于Pytorch实现的语音识别:MASR