Skip to content

xiaobainixi/orbslam_hfnet-SuperGlue

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dependency

  1. opencv

  2. boost: sudo apt install libboost-all-dev

  3. eigen: sudo apt install libeigen3-dev

  4. pangolin:

    sudo apt install libglew-dev

    git clone https://github.com/stevenlovegrove/Pangolin.git

    cd Pangolin

    mkdir build && cd build

    cmake ..

    make -j4

newly added!!

5. libnabo:
    cd omni_vslam/Thirdparty/libnabo
    mkdir build && cd build
    cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo 
    make
    sudo make install
6. 安装 nvidia显卡驱动   参考:https://blog.csdn.net/qq_32408773/article/details/84111244
     如果安装失败可能是ubuntu内核版本过高,一个参考是 5.3.0-62-generic ubuntu内核 + NVIDIA-Linux-x86_64-430.50.run (其他版本的显卡驱动也可以)
     1.Would you like to register the kernel module souces with DKMS? This will allow DKMS to automatically build a new module, if you install a different kernel later?  选择 No 继续。
     2.Nvidia's 32-bit compatibility libraries? 选择 No 继续。
     3.Would you like to run the nvidia-xconfigutility to automatically update your x configuration so that the NVIDIA x driver will be used when you restart x? Any pre-existing x confile will be backed up.  选择 Yes  继续
7. 安装 cuda10.0 
        已下载(omni_vslam/Thirdparty/tensorflow_tools/cuda_10.0.130_410.48_linux.run)
        参考:https://blog.csdn.net/qq_32408773/article/details/84112166
        注意卸载之前的cuda版本
8. 安装 cudnn-10.0v7.4.1.5 
        cd omni_vslam/Thirdparty/tensorflow_tools/cudnn-10.0-linux-x64-v7.4.1.5
        sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ 
        sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ 
        sudo chmod a+r /usr/local/cuda/include/cudnn.h 
9.安装  protobuf-3.7.1 
        cd omni_vslam/Thirdparty/tensorflow_tools/protobuf-3.7.1
        ./autogen.sh
        ./configure
        make
        sudo make install

如果你使用的不是ubuntu18.04 或者 运行slam的时候出现tensorflow 链接错误,那么需要重新将tensorflow编译为.so文件,如下:

10.安装 bazel  (此处提供的是x86_64版本的)  注意安装路径不能有中文! 最后一行命令只在当前终端有效,建立把这行命令写入 ~/.bashrc 中
        cd omni_vslam/Thirdparty/tensorflow_tools
        sudo apt-get install openjdk-8-jdk
        chmod +x bazel-0.24.1-installer-linux-x86_64.sh
        ./bazel-0.24.1-installer-linux-x86_64.sh --user 
        export PATH="$PATH:$HOME/bin"     
11.编译tensorflow
        cd omni_vslam/Thirdparty/tensorflow_r1.14
        ./configure   #进行配置,注意开启gpu模式,选项可以参考 https://blog.csdn.net/broliao/article/details/104545148
        bazel build --config=opt --config=cuda //tensorflow:libtensorflow_cc.so
        cd omni_vslam/Thirdparty/tensorflow_r1.14/bazel-bin/tensorflow   查看是否有libtensorflow_framework.so,没有的的话将其中最相似的改为这个文件名

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 87.0%
  • Fortran 6.9%
  • CMake 2.2%
  • Python 1.5%
  • Starlark 0.8%
  • C 0.7%
  • Other 0.9%