forked from xinge008/Cylinder3D
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
abcd40404
committed
Apr 7, 2021
1 parent
6dfbbfa
commit 6d14e56
Showing
3 changed files
with
161 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# -*- coding:utf-8 -*- | ||
# author: Ptzu | ||
# @file: demo_folder.py | ||
|
||
import os | ||
import time | ||
import argparse | ||
import sys | ||
import numpy as np | ||
import torch | ||
import torch.optim as optim | ||
from tqdm import tqdm | ||
import yaml | ||
|
||
from utils.metric_util import per_class_iu, fast_hist_crop | ||
from dataloader.pc_dataset import get_SemKITTI_label_name | ||
from builder import data_builder, model_builder, loss_builder | ||
from config.config import load_config_data | ||
from dataloader.dataset_semantickitti import get_model_class, collate_fn_BEV | ||
from dataloader.pc_dataset import get_pc_model_class | ||
|
||
from utils.load_save_util import load_checkpoint | ||
|
||
import warnings | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
|
||
def build_dataset(dataset_config, | ||
data_dir, | ||
grid_size=[480, 360, 32]): | ||
|
||
label_mapping = dataset_config["label_mapping"] | ||
|
||
SemKITTI_demo = get_pc_model_class('SemKITTI_demo') | ||
|
||
demo_pt_dataset = SemKITTI_demo(data_dir, imageset="demo", | ||
return_ref=True, label_mapping=label_mapping, nusc=None) | ||
|
||
demo_dataset = get_model_class(dataset_config['dataset_type'])( | ||
demo_pt_dataset, | ||
grid_size=grid_size, | ||
fixed_volume_space=dataset_config['fixed_volume_space'], | ||
max_volume_space=dataset_config['max_volume_space'], | ||
min_volume_space=dataset_config['min_volume_space'], | ||
ignore_label=dataset_config["ignore_label"], | ||
) | ||
demo_dataset_loader = torch.utils.data.DataLoader(dataset=demo_dataset, | ||
batch_size=1, | ||
collate_fn=collate_fn_BEV, | ||
shuffle=False, | ||
num_workers=4) | ||
|
||
return demo_dataset_loader | ||
|
||
def main(args): | ||
pytorch_device = torch.device('cuda:0') | ||
config_path = args.config_path | ||
configs = load_config_data(config_path) | ||
dataset_config = configs['dataset_params'] | ||
data_dir = args.demo_folder | ||
save_dir = args.save_folder + "/" | ||
|
||
demo_batch_size = 1 | ||
model_config = configs['model_params'] | ||
train_hypers = configs['train_params'] | ||
|
||
grid_size = model_config['output_shape'] | ||
num_class = model_config['num_class'] | ||
ignore_label = dataset_config['ignore_label'] | ||
model_load_path = train_hypers['model_load_path'] | ||
|
||
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"]) | ||
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1 | ||
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1] | ||
|
||
my_model = model_builder.build(model_config) | ||
if os.path.exists(model_load_path): | ||
my_model = load_checkpoint(model_load_path, my_model) | ||
|
||
my_model.to(pytorch_device) | ||
optimizer = optim.Adam(my_model.parameters(), lr=train_hypers["learning_rate"]) | ||
|
||
loss_func, lovasz_softmax = loss_builder.build(wce=True, lovasz=True, | ||
num_class=num_class, ignore_label=ignore_label) | ||
|
||
demo_dataset_loader = build_dataset(dataset_config, data_dir, grid_size=grid_size) | ||
with open(dataset_config["label_mapping"], 'r') as stream: | ||
semkittiyaml = yaml.safe_load(stream) | ||
inv_learning_map = semkittiyaml['learning_map_inv'] | ||
|
||
my_model.eval() | ||
hist_list = [] | ||
demo_loss_list = [] | ||
with torch.no_grad(): | ||
for i_iter_demo, (_, demo_vox_label, demo_grid, demo_pt_labs, demo_pt_fea) in enumerate( | ||
demo_dataset_loader): | ||
demo_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in | ||
demo_pt_fea] | ||
demo_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in demo_grid] | ||
demo_label_tensor = demo_vox_label.type(torch.LongTensor).to(pytorch_device) | ||
|
||
predict_labels = my_model(demo_pt_fea_ten, demo_grid_ten, demo_batch_size) | ||
loss = lovasz_softmax(torch.nn.functional.softmax(predict_labels).detach(), demo_label_tensor, | ||
ignore=0) + loss_func(predict_labels.detach(), demo_label_tensor) | ||
predict_labels = torch.argmax(predict_labels, dim=1) | ||
predict_labels = predict_labels.cpu().detach().numpy() | ||
for count, i_demo_grid in enumerate(demo_grid): | ||
hist_list.append(fast_hist_crop(predict_labels[ | ||
count, demo_grid[count][:, 0], demo_grid[count][:, 1], | ||
demo_grid[count][:, 2]], demo_pt_labs[count], | ||
unique_label)) | ||
inv_labels = np.vectorize(inv_learning_map.__getitem__)(predict_labels[count, demo_grid[count][:, 0], demo_grid[count][:, 1], demo_grid[count][:, 2]]) | ||
inv_labels = inv_labels.astype('uint32') | ||
outputPath = save_dir + str(i_iter_demo).zfill(6) + '.label' | ||
inv_labels.tofile(outputPath) | ||
print("save " + outputPath) | ||
demo_loss_list.append(loss.detach().cpu().numpy()) | ||
|
||
if __name__ == '__main__': | ||
# Training settings | ||
parser = argparse.ArgumentParser(description='') | ||
parser.add_argument('-y', '--config_path', default='config/semantickitti.yaml') | ||
parser.add_argument('--demo-folder', type=str, default='', help='path to the folder containing demo lidar scans', required=True) | ||
parser.add_argument('--save-folder', type=str, default='', help='path to save your result', required=True) | ||
args = parser.parse_args() | ||
|
||
print(' '.join(sys.argv)) | ||
print(args) | ||
main(args) |