Project Page: https://sites.google.com/view/vpeg-supp/home
Code Release for "Video Prediction via Example Guidance" (ICML 2020), under construction.
http://rail.eecs.berkeley.edu/datasets/bair_robot_pushing_dataset_v0.tar
python extract.py
python train_vpeg_feature.py --dataset bair --model vgg --g_dim 128 --z_dim 16 --beta 0.0001 --n_past 5 --n_future 10 --channels 3 --log_dir logs/bair-match/ --data_dir /your/data/path
python train_vpeg.py --dataset bair-match --model vgg --g_dim 128 --z_dim 16 --beta 0.0001 --alpha 0.01 --n_past 5 --n_future 10 --channels 3 --log_dir logs/bair-match/ --data_dir /your/data/path --feat_model_dir /path/to/trained/model/at/3rd/step
python generate_vpeg.py --dataset bair-match --model vgg --g_dim 128 --z_dim 16 --beta 0.0001 --alpha 0.01 --n_past 5 --n_future 25 --n_eval 30 --channels 3 --log_dir logs/bair-match/ --data_dir /your/data/path --feat_model_dir /path/to/trained/model/at/4th/step
The general idea of our work is very simple and straightforward. On this dataset our code is built based on this repo. The major contribution of our work is reflected in the train_vpeg.py (from L.355-L.390) and train_vpeg_feature.py. Please refer to the comment in the code for more details (With indicator ""Our work"").
1. Follow this repo to download/preprocess the PennAction data and to generate pseudo-keypoints labels.
python train.py --mode motion_generator --config configs/penn.yaml
python evaluate.py --config configs/penn.yaml --checkpoint_stage1 ./PretrainedModel/stage1/model.ckpt --checkpoint_stage2 ./results_VPEG/motion_generator/model.ckpt-60000 --save_dir ./gif_VPEG
On this dataset our code is built based on this repo. The major contribution of our work on this dataset is reflected in the models/motion_generator_model.py (from L.179-L.234 and from L.347-L.384). In the config file (configs/penn.yaml), setting the variable ''sth_pro'' as True enables to train the baseline model with our method. Please refer to the comment in the code for more details (With indicator ""Our work"").