Skip to content

3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection(TGRS)

License

Notifications You must be signed in to change notification settings

xmuqimingxia/3D-HANet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3D-HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection(TGRS) Paper link

3D HANet is a flexible plug-and-play Auxiliary Network. Although our open source code is based on the CasA detector, it can be verified with simple modifications to other detectors.

Please refer to CasA and OpenPCDET for the configuration of the code running environment and training of the model.

Replace the CasA/pcdet folder in CasA with the 3DHANet/pcdet folder provided by us to run the 3DHANet code.

The module of '3-D Heatmap Generator' is in the 3D-HANet/pcdet/models/backbones_2d/map_to_bev/height_compression.py; GT of 3D heatmap value is in the 3D-HANet/pcdet/models/dense_heads/anchor_head_single.py

Uploading image.png…

Getting Started

conda create -n spconv2 python=3.9
conda activate spconv2
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install numpy==1.19.5 protobuf==3.19.4 scikit-image==0.19.2 waymo-open-dataset-tf-2-5-0 nuscenes-devkit==1.0.5 spconv-cu111 numba scipy pyyaml easydict fire tqdm shapely matplotlib opencv-python addict pyquaternion awscli open3d pandas future pybind11 tensorboardX tensorboard Cython prefetch-generator

Environment we tested

Our released implementation is tested on.

  • Ubuntu 18.04
  • Python 3.6.9
  • PyTorch 1.8.1
  • Numba 0.53.1
  • Spconv 1.2.1
  • NVIDIA CUDA 11.1
  • 8x Tesla V100 GPUs

We also tested on.

  • Ubuntu 18.04
  • Python 3.9.13
  • PyTorch 1.8.1
  • Numba 0.53.1
  • Spconv 2.1.22 # pip install spconv-cu111
  • NVIDIA CUDA 11.1
  • 2x 3090 GPUs

Prepare Dataset

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
CasA
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools

Run following command to creat dataset infos:

python3 -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

Waymo Dataset

CasA
├── data
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_train_val_test
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── pcdet_waymo_track_dbinfos_train_cp.pkl
│   │   │── waymo_infos_test.pkl
│   │   │── waymo_infos_train.pkl
│   │   │── waymo_infos_val.pkl
├── pcdet
├── tools

Run following command to creat dataset infos:

python3 -m pcdet.datasets.waymo.waymo_tracking_dataset --cfg_file tools/cfgs/dataset_configs/waymo_tracking_dataset.yaml 

Installation

git clone https://github.com/xmuqimingxia/3D-HANet.git
cd 3D-HANet
python3 setup.py develop

Training

cd tools
python3 train.py --cfg_file ${CONFIG_FILE}

For example, if you train the CasA-V model:

cd tools
python3 train.py --cfg_file cfgs/kitti_models/CasA-V.yaml

Multiple GPU train: you can modify the gpu number in the dist_train.sh and run

sh dist_train.sh

The log infos are saved into log.txt You can run cat log.txt to view the training process.

Acknowledgement

This repo is developed from OpenPCDet 0.3, we thank shaoshuai shi for his implementation of OpenPCDet and Hai wu for CasA.

About

3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection(TGRS)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published