
Starred repositories
Swift community driven package for OpenAI public API
Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format - [Bedrock, Azure, OpenAI, VertexAI, Cohere, Anthropic, Sagemaker, HuggingFace, Replicate, Groq]
SMuflhi / ollama-app-for-Android-
Forked from JHubi1/ollama-appA modern and easy-to-use client for Ollama
2-2000x faster ML algos, 50% less memory usage, works on all hardware - new and old.
Finetune Llama 3.3, DeepSeek-R1 & Reasoning LLMs 2x faster with 70% less memory! 🦥
一个基于React+Antd的后台管理模版,在线预览https://nlrx-wjc.github.io/react-antd-admin-template/
An opinionated toast component for React.
《李宏毅深度学习教程》(李宏毅老师推荐👍,苹果书🍎),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases
🍒 Cherry Studio is a desktop client that supports for multiple LLM providers. Support deepseek-r1
数据挖掘、计算机视觉、自然语言处理、推荐系统竞赛知识、代码、思路
A high-throughput and memory-efficient inference and serving engine for LLMs
Making large AI models cheaper, faster and more accessible
Janus-Series: Unified Multimodal Understanding and Generation Models
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, and more.
User Interface made for Ollama.ai using Swift
Async Web Server for ESP32
Chakra UI is a component system for building products with speed ⚡️
An exhaustive expansion of the standard SwiftUI library.
OpenAI ChatGPT SwiftUI app for iOS, iPadOS, macOS
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
High-Resolution 3D Assets Generation with Large Scale Hunyuan3D Diffusion Models.
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.
强化学习中文教程(蘑菇书🍄),在线阅读地址:https://datawhalechina.github.io/easy-rl/
Flutter 完整开发实战详解系列,提供在线预览和pdf下载,本系列将完整讲述:如何快速从 0 开发一个完整的 Flutter APP,配套高完成度 Flutter 开源项目 GSYGithubAppFlutter ,同时会提供一些Flutter的开发细节技巧,之后深入源码和实战为你全面解析 Flutter 。
The LLM's practical guide: From the fundamentals to deploying advanced LLM and RAG apps to AWS using LLMOps best practices