-
Yunnan University
- Yunnan University, Chenggong District, Kunming, Yunnan Province, China
Highlights
- Pro
Stars
刷算法全靠套路,认准 labuladong 就够了!English version supported! Crack LeetCode, not only how, but also why.
An awesome list for students who prepare for IELTS in public domains (on-going)
雅思词汇真经、雅思语法、听力 179、阅读 538 同义替换等。Everything during preparing for my IELTS exam.
The code for the paper: TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning
Open source tools for computational pathology - Nature BME
"This is the code for the paper titled 'A Robust Domain Adversarial Learning Approach for Parkinson’s Disease Severity Assessment,' which has been submitted at ICASSP 2025."
ku-milab / TransSleep
Forked from jaeun11/TransSleepA source code for deep learning-based autonomous sleep staging.
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification
Deployment of PyTorch chatbot with Flask
xiaochengcike / Ai-learn
Forked from tangyudi/Ai-Learn人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理等热门领域
标注自己的数据集,训练、评估、测试、部署自己的人工智能算法
Official code, datasets and checkpoints for "Timer: Generative Pre-trained Transformers Are Large Time Series Models" (ICML 2024)
Robust machine learning for responsible AI
Transfer learning / domain adaptation / domain generalization / multi-task learning etc. Papers, codes, datasets, applications, tutorials.-迁移学习
Code for Transfer Learning book--《迁移学习导论》配套代码
A curated list of resources for Learning with Noisy Labels
A curated (most recent) list of resources for Learning with Noisy Labels
Approaching (Almost) Any Machine Learning Problem中译版,在线文档地址:https://ytzfhqs.github.io/AAAMLP-CN/
The standard data-centric AI package for data quality and machine learning with messy, real-world data and labels.
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.
本项目是一个面向小白开发者的大模型应用开发教程,在线阅读地址:https://datawhalechina.github.io/llm-universe/
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial…
范仁义录播课资料,会依次推出各种完全免费的前端、后端、大数据、人工智能等课程,课程网站: https://fanrenyi.com ; b站课程地址: https://space.bilibili.com/45664489 ;