Skip to content

Commit

Permalink
bilinear filler -- useful for interpolation with DeconvolutionLayer
Browse files Browse the repository at this point in the history
This filler is a convenience for interpolating with DeconvolutionLayer
or smoothing + downsampling with ConvolutionLayer for stride > 1.
  • Loading branch information
tnarihi authored and shelhamer committed Jul 1, 2015
1 parent fd44a91 commit 41df4cd
Showing 1 changed file with 56 additions and 0 deletions.
56 changes: 56 additions & 0 deletions include/caffe/filler.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -208,6 +208,60 @@ class MSRAFiller : public Filler<Dtype> {
}
};

/*!
@brief Fills a Blob with coefficients for bilinear interpolation.
A common use case is with the DeconvolutionLayer acting as upsampling.
You can upsample a feature map with shape of (B, C, H, W) by any integer factor
using the following proto.
\code
layer {
name: "upsample", type: "Deconvolution"
bottom: "{{bottom_name}}" top: "{{top_name}}"
convolution_param {
kernel_size: {{2 * factor - factor % 2}} stride: {{factor}}
num_output: {{C}} group: {{C}}
pad: {{ceil((factor - 1) / 2.)}}
weight_filler: { type: "bilinear" } bias_term: false
}
param { lr_mult: 0 decay_mult: 0 }
}
\endcode
Please use this by replacing `{{}}` with your values. By specifying
`num_output: {{C}} group: {{C}}`, it behaves as
channel-wise convolution. The filter shape of this deconvolution layer will be
(C, 1, K, K) where K is `kernel_size`, and this filler will set a (K, K)
interpolation kernel for every channel of the filter identically. The resulting
shape of the top feature map will be (B, C, factor * H, factor * W).
Note that the learning rate and the
weight decay are set to 0 in order to keep coefficient values of bilinear
interpolation unchanged during training. If you apply this to an image, this
operation is equivalent to the following call in Python with Scikit.Image.
\code{.py}
out = skimage.transform.rescale(img, factor, mode='constant', cval=0)
\endcode
*/
template <typename Dtype>
class BilinearFiller : public Filler<Dtype> {
public:
explicit BilinearFiller(const FillerParameter& param)
: Filler<Dtype>(param) {}
virtual void Fill(Blob<Dtype>* blob) {
CHECK_EQ(blob->num_axes(), 4) << "Blob must be 4 dim.";
CHECK_EQ(blob->width(), blob->height()) << "Filter must be square";
Dtype* data = blob->mutable_cpu_data();
int f = ceil(blob->width() / 2.);
float c = (2 * f - 1 - f % 2) / (2. * f);
for (int i = 0; i < blob->count(); ++i) {
float x = i % blob->width();
float y = (i / blob->width()) % blob->height();
data[i] = (1 - fabs(x / f - c)) * (1 - fabs(y / f - c));
}
CHECK_EQ(this->filler_param_.sparse(), -1)
<< "Sparsity not supported by this Filler.";
}
};

/**
* @brief Get a specific filler from the specification given in FillerParameter.
*
Expand All @@ -229,6 +283,8 @@ Filler<Dtype>* GetFiller(const FillerParameter& param) {
return new XavierFiller<Dtype>(param);
} else if (type == "msra") {
return new MSRAFiller<Dtype>(param);
} else if (type == "bilinear") {
return new BilinearFiller<Dtype>(param);
} else {
CHECK(false) << "Unknown filler name: " << param.type();
}
Expand Down

0 comments on commit 41df4cd

Please sign in to comment.