Skip to content

My solutions to programming exercises from Stanford online Machine Learning class.

Notifications You must be signed in to change notification settings

ycechung/ml-class

 
 

Repository files navigation

Here will be solutions to Programming Exercises proposed during Stanford's online Machine Learning class. Some notes, thoughts and reasoning on course might be also added.

Contributions are highly appreciated.

If you are attending the class, feel free to fork the repo, open issues, request pulls, etc.

Paying respect to the Honor code, I will not publish 100%-correct solutions before due time, such solutions will be added shortly after the deadline. However, work-in-progress solutions will be available.

More information about this course you could find on official website and in wiki.

For information about Octave, download links, installation instruction, etc. go to GNU/Octave or wiki.

Solution to second exercise, Logistic Regression, have been added.

Rough draft of digit recognition (Ex 3).

Blank for 4th exercise, Neural network learning, has been added.

Some attempts on Ex 4.

Some math and logic on why to choose epsilon = 0.12 for Weights Initialization could be found here in section 4.2.1 «Theoretical Considerations and a New Normalized Initialization».

About

My solutions to programming exercises from Stanford online Machine Learning class.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published