Skip to content

yebrahim/pipelines

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status Coverage Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines documentation.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.

About

Machine Learning Pipelines for Kubeflow

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 33.5%
  • TypeScript 33.1%
  • Python 26.4%
  • Shell 3.9%
  • Dockerfile 1.6%
  • JavaScript 0.7%
  • Other 0.8%