Skip to content

Latest commit

 

History

History
155 lines (121 loc) · 5.31 KB

developer_guide.md

File metadata and controls

155 lines (121 loc) · 5.31 KB

ML Pipeline Development Guideline

This document describes the development guideline to contribute to ML pipeline project. Please check the main page for instruction on how to deploy a ML pipeline system.

ML pipeline deployment

The ML pipeline system uses Ksonnet as part of the deployment process. Ksonnet provides the flexibility to generate Kubernetes manifests from parameterized templates and makes it easy to customize Kubernetes manifests for different use cases. The Ksonnet is wrapped in a customized bootstrap container so a user don't need to explicitly deal with Ksonnet to install ML pipeline.

The docker container accepts various parameters to customize your deployment.

  • --namespace the namespace to deploy to
  • --api_image the API server image to use
  • --ui_image the webserver image to use
  • --report_usage whether to report usage for the deployment
  • --uninstall to uninstall everything.

See bootstrapper.yaml for examples on how to pass in parameter.

Alternatively, you can use deploy.sh if you want to interact with Ksonnet directly. To deploy, run the script locally.

$ ml-pipeline/deploy.sh

And you will se a Ksonnet APP folder generated in your current path. If you want to update or delete the K8s resource created by the deployment, run

# Update
$ cd ml-pipeline && ks apply default
# Delete
$ cd ml-pipeline && ks delete default

Build Image

GKE

To be able to use GKE, the Docker images need to be uploaded to a public Docker repository, such as GCR

To build the API server image and upload it to GCR:

# Run in the repository root directory
$ docker build -t gcr.io/<your-gcp-project>/api-server:latest -f backend/Dockerfile .
# Push to GCR
$ gcloud auth configure-docker
$ docker push gcr.io/<your-gcp-project>/api-server:latest

To build the scheduled workflow controller image and upload it to GCR:

# Run in the repository root directory
$ docker build -t gcr.io/<your-gcp-project>/scheduledworkflow:latest -f backend/Dockerfile.scheduledworkflow .
# Push to GCR
$ gcloud auth configure-docker
$ docker push gcr.io/<your-gcp-project>/scheduledworkflow:latest

To build the persistence agent image and upload it to GCR:

# Run in the repository root directory
$ docker build -t gcr.io/<your-gcp-project>/persistenceagent:latest -f backend/Dockerfile.persistenceagent .
# Push to GCR
$ gcloud auth configure-docker
$ docker push gcr.io/<your-gcp-project>/persistenceagent:latest

To build the frontend image and upload it to GCR:

# Run in the repository root directory
$ docker build -t gcr.io/<your-gcp-project>/frontend:latest -f frontend/Dockerfile .
# Push to GCR
$ gcloud auth configure-docker
$ docker push gcr.io/<your-gcp-project>/frontend:latest

Minikube

Minikube can pick your local Docker image so you don't need to upload to remote repository.

For example, to build API server image

$ docker build -t ml-pipeline-api-server -f backend/Dockerfile .

Update deployment image

If your change updates deployment image (e.g. add new service account, change image version etc.), remember to update the deployment image as well, and use that image to create deployment job.

$ docker build -t gcr.io/<your-gcp-project>/bootstrapper ml-pipeline/
$ gcloud auth configure-docker
$ docker push gcr.io/<your-gcp-project>/bootstrapper

Unit test

API server

Run unit test for the API server

cd backend/src/ && go test ./...

Frontend

TODO: add instruction

DSL

pip install ./dsl/ --upgrade && python ./dsl/tests/main.py
pip install ./dsl-compiler/ --upgrade && python ./dsl-compiler/tests/main.py

Integration test

API server

Check this page for more details.

E2E test

TODO: Add instruction

Troubleshooting

Q: How to access to the database directly?

You can inspect mysql database directly by running:

kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql
mysql> use mlpipeline;
mysql> select * from jobs;

Q: How to inspect object store directly?

Minio provides its own UI to inspect the object store directly:

kubectl port-forward -n ${NAMESPACE} $(kubectl get pods -l app=minio -o jsonpath='{.items[0].metadata.name}' -n ${NAMESPACE}) 9000:9000
Access Key:minio
Secret Key:minio123

Q: I see an error of exceeding Github rate limit when deploying the system. What can I do?

See Ksonnet troubleshooting page page

Q: How do I check my API server log?

API server logs are located at /tmp directory of the pod. To SSH into the pod, run:

kubectl exec -it -n ${NAMESPACE} $(kubectl get pods -l app=ml-pipeline -o jsonpath='{.items[0].metadata.name}' -n ${NAMESPACE}) -- /bin/bash

Q: How to check my cluster status if I am using Minikube?

Minikube provides dashboard for deployment

minikube dashboard