Skip to content

Commit

Permalink
pep8 styling
Browse files Browse the repository at this point in the history
  • Loading branch information
elggem committed Nov 28, 2016
1 parent 82dff4c commit 219302f
Show file tree
Hide file tree
Showing 8 changed files with 191 additions and 222 deletions.
2 changes: 2 additions & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ install:
- pip install numpy
- pip install matplotlib
- pip install colorlog
# install destin package
- pip install .
# install TensorFlow from https://storage.googleapis.com/tensorflow/
- if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then
pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl;
Expand Down
8 changes: 4 additions & 4 deletions data/make-mnist-movie.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,21 +9,21 @@
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('mnist', one_hot=True)

train_data = mnist.train.images
train_data = mnist.train.images

print "👉 processed input data!"

# Define the codec and create VideoWriter object
out = cv2.VideoWriter('./mnist.mjpg',cv.FOURCC(*'MJPG'), 25, (28,28))
out = cv2.VideoWriter('./mnist.mjpg', cv.FOURCC(*'MJPG'), 25, (28, 28))

i = 0

for frame in train_data:
print "frame... " + str(i)
i = i + 1
frame = frame * 255.0
x = frame.reshape([28,28]).astype('uint8')
x = np.repeat(x,3,axis=1)
x = frame.reshape([28, 28]).astype('uint8')
x = np.repeat(x, 3, axis=1)
x = x.reshape(28, 28, 3)
out.write(x)

Expand Down
2 changes: 1 addition & 1 deletion destin/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,4 @@
stream.setFormatter(formatter)
log = logging.getLogger()
log.setLevel(LOG_LEVEL)
log.addHandler(stream)
log.addHandler(stream)
111 changes: 50 additions & 61 deletions tests/big_destin.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,77 +14,69 @@

with tf.Session() as sess:
ae_bottom_a = AutoEncoderNode(
session = sess,
name="bottom_a",
hidden_dim=40

)
session=sess,
name="bottom_a",
hidden_dim=40
)

ae_bottom_b = AutoEncoderNode(
session = sess,
name="bottom_b",
hidden_dim=40

)
session=sess,
name="bottom_b",
hidden_dim=40
)

ae_bottom_c = AutoEncoderNode(
session = sess,
name="bottom_c",
hidden_dim=40

)
session=sess,
name="bottom_c",
hidden_dim=40
)

ae_bottom_d = AutoEncoderNode(
session = sess,
name="bottom_d",
hidden_dim=40

)
session=sess,
name="bottom_d",
hidden_dim=40
)

ae_bottom_e = AutoEncoderNode(
session = sess,
name="bottom_e",
hidden_dim=40

)
session=sess,
name="bottom_e",
hidden_dim=40
)

ae_bottom_f = AutoEncoderNode(
session = sess,
name="bottom_f",
hidden_dim=40

)
session=sess,
name="bottom_f",
hidden_dim=40
)

ae_bottom_g = AutoEncoderNode(
session = sess,
name="bottom_g",
hidden_dim=40

)
session=sess,
name="bottom_g",
hidden_dim=40
)

ae_bottom_h = AutoEncoderNode(
session = sess,
name="bottom_h",
hidden_dim=40

)
session=sess,
name="bottom_h",
hidden_dim=40
)

ae_top = AutoEncoderNode(
session = sess,
name="top",
hidden_dim=16
)

inputlayer = OpenCVInputLayer(output_size=(28,28), batch_size=250)
ae_bottom_a.register_tensor(inputlayer.get_tensor_for_region([00,00,14,14]))
ae_bottom_b.register_tensor(inputlayer.get_tensor_for_region([00,14,14,14]))
ae_bottom_c.register_tensor(inputlayer.get_tensor_for_region([14,00,14,14]))
ae_bottom_d.register_tensor(inputlayer.get_tensor_for_region([14,14,14,14]))
ae_bottom_e.register_tensor(inputlayer.get_tensor_for_region([00,00,10,10]))
ae_bottom_f.register_tensor(inputlayer.get_tensor_for_region([00,14,14,10]))
ae_bottom_g.register_tensor(inputlayer.get_tensor_for_region([14,00,12,11]))
ae_bottom_h.register_tensor(inputlayer.get_tensor_for_region([14,14,11,9]))
session=sess,
name="top",
hidden_dim=16
)

inputlayer = OpenCVInputLayer(output_size=(28, 28), batch_size=250)

ae_bottom_a.register_tensor(inputlayer.get_tensor_for_region([00, 00, 14, 14]))
ae_bottom_b.register_tensor(inputlayer.get_tensor_for_region([00, 14, 14, 14]))
ae_bottom_c.register_tensor(inputlayer.get_tensor_for_region([14, 00, 14, 14]))
ae_bottom_d.register_tensor(inputlayer.get_tensor_for_region([14, 14, 14, 14]))
ae_bottom_e.register_tensor(inputlayer.get_tensor_for_region([00, 00, 10, 10]))
ae_bottom_f.register_tensor(inputlayer.get_tensor_for_region([00, 14, 14, 10]))
ae_bottom_g.register_tensor(inputlayer.get_tensor_for_region([14, 00, 12, 11]))
ae_bottom_h.register_tensor(inputlayer.get_tensor_for_region([14, 14, 11, 9]))

ae_top.register_tensor(ae_bottom_a.get_output_tensor())
ae_top.register_tensor(ae_bottom_b.get_output_tensor())
Expand All @@ -97,18 +89,18 @@

ae_top.initialize_graph()

# initialize summary writer with graph
# initialize summary writer with graph
SummaryWriter().writer.add_graph(sess.graph)
merged_summary_op = tf.merge_all_summaries()

merged_train_ops = [ae_bottom_a.train_op, ae_bottom_b.train_op, ae_bottom_c.train_op, ae_bottom_d.train_op, ae_bottom_e.train_op, ae_bottom_f.train_op, ae_bottom_g.train_op, ae_bottom_h.train_op]
merged_train_ops = [ae_bottom_a.train_op, ae_bottom_b.train_op, ae_bottom_c.train_op, ae_bottom_d.train_op, ae_bottom_e.train_op, ae_bottom_f.train_op, ae_bottom_g.train_op, ae_bottom_h.train_op]

iteration = 0

def feed_callback(feed_dict):
global iteration
iteration += 1

for _ in xrange(50):
sess.run(merged_train_ops, feed_dict=feed_dict)
sess.run(ae_top.train_op, feed_dict=feed_dict)
Expand All @@ -117,7 +109,4 @@ def feed_callback(feed_dict):
SummaryWriter().writer.add_summary(summary_str, iteration)
SummaryWriter().writer.flush()


inputlayer.feed_video(feed_callback, "data/mnist.mp4", frames=10000)


50 changes: 23 additions & 27 deletions tests/profile.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,32 +15,30 @@
log.info("recording summaries to " + SummaryWriter().get_summary_folder())

with tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=4)) as sess:
inputlayer = OpenCVInputLayer(output_size=(28,28), batch_size=250)
inputlayer = OpenCVInputLayer(output_size=(28, 28), batch_size=250)

ae_bottom_a = AutoEncoderNode(
session = sess,
name="bottom-a",
hidden_dim=100

)
session=sess,
name="bottom-a",
hidden_dim=100
)

ae_bottom_b = AutoEncoderNode(
session = sess,
name="bottom-b",
hidden_dim=100

)
session=sess,
name="bottom-b",
hidden_dim=100
)

ae_bottom_a.register_tensor(inputlayer.get_tensor_for_region([0,0,28,28]))
ae_bottom_a.register_tensor(inputlayer.get_tensor_for_region([0, 0, 28, 28]))
ae_bottom_a.initialize_graph()

ae_bottom_b.register_tensor(inputlayer.get_tensor_for_region([0,0,28,28]))
ae_bottom_b.register_tensor(inputlayer.get_tensor_for_region([0, 0, 28, 28]))
ae_bottom_b.initialize_graph()

# initialize summary writer with graph
# initialize summary writer with graph
SummaryWriter().writer.add_graph(sess.graph)
merged_summary_op = tf.merge_all_summaries()
merged_summary_op = tf.merge_all_summaries()

run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()

Expand All @@ -50,27 +48,25 @@ def feed_callback(feed_dict):
global iteration
iteration += 1

#for _ in xrange(50):
summary_str, _,_ = sess.run([merged_summary_op, ae_bottom_a.train_op,ae_bottom_b.train_op], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
#sess.run([ae_bottom_a.train_op,ae_bottom_b.train_op], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
# for _ in xrange(50):
summary_str, _, _ = sess.run([merged_summary_op, ae_bottom_a.train_op, ae_bottom_b.train_op], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)
# sess.run([ae_bottom_a.train_op,ae_bottom_b.train_op], feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)

SummaryWriter().writer.add_summary(summary_str, iteration)
SummaryWriter().writer.flush()


inputlayer.feed_video(feed_callback, "data/mnist.mp4", frames=1000)

SummaryWriter().writer.add_run_metadata(run_metadata, "run")

tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open(SummaryWriter().get_output_folder('timelines')+"/timeline.json", 'w') as f:
with open(SummaryWriter().get_output_folder('timelines') + "/timeline.json", 'w') as f:
f.write(ctf)
log.info("📊 written timeline trace.")

#image = SummaryWriter().batch_of_1d_to_image_grid(ae_bottom_a.max_activations())
#SummaryWriter().image_summary(ae_bottom_a.name, image)

#plt.imshow(image, cmap = plt.get_cmap('gray'), interpolation='nearest')
#plt.axis('off')
#plt.show()
# image = SummaryWriter().batch_of_1d_to_image_grid(ae_bottom_a.max_activations())
# SummaryWriter().image_summary(ae_bottom_a.name, image)
# plt.imshow(image, cmap = plt.get_cmap('gray'), interpolation='nearest')
# plt.axis('off')
# plt.show()
33 changes: 15 additions & 18 deletions tests/single_ae.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,38 +14,35 @@

with tf.Session() as sess:
ae = AutoEncoderNode(
session = sess,
name="ae",
hidden_dim=40
)
session=sess,
name="ae",
hidden_dim=40
)

inputlayer = OpenCVInputLayer(output_size=(28,28), batch_size=250)
ae.register_tensor(inputlayer.get_tensor_for_region([00,14,14,14]))
inputlayer = OpenCVInputLayer(output_size=(28, 28), batch_size=250)

ae.register_tensor(inputlayer.get_tensor_for_region([0, 14, 14, 14]))

ae.initialize_graph()

# initialize summary writer with graph
# initialize summary writer with graph
SummaryWriter().writer.add_graph(sess.graph)
merged_summary_op = tf.merge_all_summaries()
merged_summary_op = tf.merge_all_summaries()

iteration = 0

def feed_callback(feed_dict):
global iteration
iteration += 1

for _ in xrange(50):
sess.run(ae.train_op, feed_dict=feed_dict)

#summary_str = merged_summary_op.eval(feed_dict=feed_dict)
#SummaryWriter().writer.add_summary(summary_str, iteration)
#SummaryWriter().writer.flush()

for _ in xrange(50):
sess.run(ae.train_op, feed_dict=feed_dict)

# summary_str = merged_summary_op.eval(feed_dict=feed_dict)
# SummaryWriter().writer.add_summary(summary_str, iteration)
# SummaryWriter().writer.flush()

inputlayer.feed_video(feed_callback, "data/mnist.mp4", frames=50000)

image = SummaryWriter().batch_of_1d_to_image_grid(ae.max_activations.eval())
SummaryWriter().image_summary(ae.name+"hoiho", image)

SummaryWriter().image_summary(ae.name, image)
Loading

0 comments on commit 219302f

Please sign in to comment.