Skip to content

yeong22/hello-transformer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

안녕 트랜스포머

이 레포지토리는 "안녕 트랜스포머"의 소스 코드 레포지토리입니다.

파이선 패키지 설치

  1. 가상환경을 설치합니다. (파이선 버전은 3.6 이상을 권고합니다)
$ virtualenv -p /usr/bin/python3.8 env_hello
$ source env_hello/bin/activate
  1. pip을 사용해서 파이선 패키지를 설치합니다.
# cpu 환경에서 사용할 경우, chapter4의 BERT 파인튜닝 모델의 학습을 위한 .ipynb 파일 실행이 어려움
$ pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cpu

# cuda 버전이 10.2일 경우
$ pip install torch torchvision torchaudio

# cuda 버전이 11.3일 경우
$ pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

# cuda 버전이 11.6일 경우
$ pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

# torch 이외의 패키지 설치
$ pip install -r requirements.txt
  1. 주피터 노트북 커널을 추가합니다.
$ python -m ipykernel install --user --name env_hello --display-name env_hello

모델 파일

이 책에서 사용하는 모델 파일 중에서 크기가 크지 않은 파일은 git 레포지토리를 통해 직접 다운로드 받을 수 있습니다. 큰 모델 파일의 경우에는 아래와 같이 쪼개진 tar.gz 파일을 다시 합쳐서 압축을 푸는 방식으로 얻을 수 있습니다.

# research/chapter4/cola_classification
$ cd research/chapter4/cola_classification/models/
$ cat models.tar.gz.parta* > models.tar.gz
$ tar xvfz models.tar.gz
$ ls -al *.bin
-rw-rw-r-- 1 jkfirst jkfirst 438019245  8월  2 02:47 cola_model.bin
-rw-rw-r-- 1 jkfirst jkfirst 438019245  8월  2 02:56 cola_model_no_pretrained.bin

# research/chapter4/squad
$ cd research/chapter4/squad/models
$ cat models.tar.gz.parta* > models.tar.gz
$ tar xvfz models.tar.gz
$ ls -al *.bin
-rw-rw-r-- 1 jkfirst jkfirst 435656113  8월  2 13:10 squad_model.bin

참고 문헌

1. Chapter1

2. Chapter2

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. CoRR, abs/1706.03762. http://arxiv.org/abs/1706.03762

  • Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., & Bengio, Y. (2016). Professor Forcing: A New Algorithm for Training Recurrent Networks. arXiv. https://doi.org/10.48550/ARXIV.1610.09038

  • Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a Method for Automatic Evaluation of Machine Translation. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 311–318. https://doi.org/10.3115/1073083.1073135

3. Chapter3

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. CoRR, abs/1706.03762. http://arxiv.org/abs/1706.03762

  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR, abs/1810.04805. http://arxiv.org/abs/1810.04805

4. Chapter4

  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR, abs/1810.04805. http://arxiv.org/abs/1810.04805

  • Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. CoRR, abs/1909.11942. http://arxiv.org/abs/1909.11942

  • Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. CoRR, abs/1909.11942. http://arxiv.org/abs/1909.11942

  • Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.

  • Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv. https://doi.org/10.48550/ARXIV.1907.11692

  • Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. arXiv. https://doi.org/10.48550/ARXIV.2003.10555

  • Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv. https://doi.org/10.48550/ARXIV.1503.02531

  • Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontañón, S., Pham, P., Ravula, A., Wang, Q., Yang, L., & Ahmed, A. (2020). Big Bird: Transformers for Longer Sequences. CoRR, abs/2007.14062. https://arxiv.org/abs/2007.14062

  • Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The Efficient Transformer. CoRR, abs/2001.04451. https://arxiv.org/abs/2001.04451

  • Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017). The Reversible Residual Network: Backpropagation Without Storing Activations. CoRR, abs/1707.04585. http://arxiv.org/abs/1707.04585

  • Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. http://arxiv.org/abs/1804.07461

5. Chapter5

  • Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2018). Language Models are Unsupervised Multitask Learners. https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

  • McAuley, J., & Leskovec, J. (2013). Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text. Proceedings of the 7th ACM Conference on Recommender Systems, 165–172. https://doi.org/10.1145/2507157.2507163

  • Nichol, A., Achiam, J., & Schulman, J. (2018). On First-Order Meta-Learning Algorithms. CoRR, abs/1803.02999. http://arxiv.org/abs/1803.02999

  • Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. CoRR, abs/2005.14165. https://arxiv.org/abs/2005.14165

6. 부록

  • Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A. G., Adam, H., & Kalenichenko, D. (2017). Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. CoRR, abs/1712.05877. http://arxiv.org/abs/1712.05877

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 82.3%
  • Python 17.7%