Skip to content

Commit

Permalink
Merge pull request tensorflow#10627 from taehoonlee/fix_typos_5
Browse files Browse the repository at this point in the history
Fix typos
  • Loading branch information
caisq authored Jun 11, 2017
2 parents 4aa26ce + cc2b908 commit da1e817
Show file tree
Hide file tree
Showing 10 changed files with 25 additions and 25 deletions.
6 changes: 3 additions & 3 deletions tensorflow/contrib/keras/python/keras/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -3260,7 +3260,7 @@ def conv2d(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
dilation_rate: tuple of 2 integers.
Returns:
Expand Down Expand Up @@ -3308,7 +3308,7 @@ def conv2d_transpose(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
Returns:
A tensor, result of transposed 2D convolution.
Expand Down Expand Up @@ -3394,7 +3394,7 @@ def conv3d(x,
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
for inputs/kernels/outputs.
dilation_rate: tuple of 3 integers.
Returns:
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/contrib/keras/python/keras/models_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def custom_loss(y_true, y_pred):
out2 = model.predict(x)
self.assertAllClose(out, out2, atol=1e-05)

def test_fuctional_model_saving(self):
def test_functional_model_saving(self):
if h5py is None:
return # Skip test if models cannot be saved.

Expand Down
20 changes: 10 additions & 10 deletions tensorflow/contrib/learn/python/learn/estimators/linear_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -729,7 +729,7 @@ def input_fn():
self.assertLess(loss, 0.07)

def testSdcaOptimizerRealValuedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and real valued features."""
"""Tests LinearClassifier with SDCAOptimizer and real valued features."""

def input_fn():
return {
Expand Down Expand Up @@ -776,7 +776,7 @@ def input_fn():
self.assertLess(loss, 0.05)

def testSdcaOptimizerBucketizedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and bucketized features."""
"""Tests LinearClassifier with SDCAOptimizer and bucketized features."""

def input_fn():
return {
Expand All @@ -802,7 +802,7 @@ def input_fn():
self.assertGreater(scores['accuracy'], 0.9)

def testSdcaOptimizerSparseFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and sparse features."""
"""Tests LinearClassifier with SDCAOptimizer and sparse features."""

def input_fn():
return {
Expand Down Expand Up @@ -833,7 +833,7 @@ def input_fn():
self.assertGreater(scores['accuracy'], 0.9)

def testSdcaOptimizerWeightedSparseFeatures(self):
"""LinearClasssifier with SDCAOptimizer and weighted sparse features."""
"""LinearClassifier with SDCAOptimizer and weighted sparse features."""

def input_fn():
return {
Expand Down Expand Up @@ -864,7 +864,7 @@ def input_fn():
self.assertGreater(scores['accuracy'], 0.9)

def testSdcaOptimizerCrossedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and crossed features."""
"""Tests LinearClassifier with SDCAOptimizer and crossed features."""

def input_fn():
return {
Expand Down Expand Up @@ -897,7 +897,7 @@ def input_fn():
self.assertGreater(scores['accuracy'], 0.9)

def testSdcaOptimizerMixedFeatures(self):
"""Tests LinearClasssifier with SDCAOptimizer and a mix of features."""
"""Tests LinearClassifier with SDCAOptimizer and a mix of features."""

def input_fn():
return {
Expand Down Expand Up @@ -1509,7 +1509,7 @@ def input_fn():
self.assertLess(loss, 0.05)

def testSdcaOptimizerSparseFeaturesWithL1Reg(self):
"""Tests LinearClasssifier with SDCAOptimizer and sparse features."""
"""Tests LinearClassifier with SDCAOptimizer and sparse features."""

def input_fn():
return {
Expand Down Expand Up @@ -1581,7 +1581,7 @@ def input_fn():
self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm)

def testSdcaOptimizerBiasOnly(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""

def input_fn():
"""Testing the bias weight when it's the only feature present.
Expand Down Expand Up @@ -1614,7 +1614,7 @@ def input_fn():
regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1)

def testSdcaOptimizerBiasAndOtherColumns(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""

def input_fn():
"""Testing the bias weight when there are other features present.
Expand Down Expand Up @@ -1676,7 +1676,7 @@ def input_fn():
regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05)

def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self):
"""Tests LinearClasssifier with SDCAOptimizer and validates bias weight."""
"""Tests LinearClassifier with SDCAOptimizer and validates bias weight."""

def input_fn():
"""Testing the bias weight when there are other features present.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ def testEstimatorSpec_export_regression_with_probabilities(self):
self.assertAllEqual(predictions["probabilities"].eval(),
regression_output.value.eval())

def testEstimatorSpec_export_classsification(self):
def testEstimatorSpec_export_classification(self):
predictions = self.create_predictions()
output_alternatives = {"classification_head": (
constants.ProblemType.CLASSIFICATION, predictions)}
Expand All @@ -143,7 +143,7 @@ def testEstimatorSpec_export_classsification(self):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())

def testEstimatorSpec_export_classsification_with_missing_scores(self):
def testEstimatorSpec_export_classification_with_missing_scores(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["scores"]
Expand All @@ -165,7 +165,7 @@ def testEstimatorSpec_export_classsification_with_missing_scores(self):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())

def testEstimatorSpec_export_classsification_with_missing_scores_proba(self):
def testEstimatorSpec_export_classification_with_missing_scores_proba(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["scores"]
Expand All @@ -187,7 +187,7 @@ def testEstimatorSpec_export_classsification_with_missing_scores_proba(self):
self.assertAllEqual(predictions["classes"].eval(),
classification_output.classes.eval())

def testEstimatorSpec_export_classsification_with_missing_classes(self):
def testEstimatorSpec_export_classification_with_missing_classes(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
del output_alternatives_predictions["classes"]
Expand All @@ -208,7 +208,7 @@ def testEstimatorSpec_export_classsification_with_missing_classes(self):
classification_output.scores.eval())
self.assertIsNone(classification_output.classes)

def testEstimatorSpec_export_classsification_with_nonstring_classes(self):
def testEstimatorSpec_export_classification_with_nonstring_classes(self):
predictions = self.create_predictions()
output_alternatives_predictions = predictions.copy()
output_alternatives_predictions["classes"] = constant_op.constant(
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/core/kernels/priority_queue.cc
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ void PriorityQueue::TryDequeueMany(int num_elements, OpKernelContext* ctx,
for (; s > 0; --s) {
if (attempt->tuple.empty()) {
// Only allocate tuple when we have something to dequeue
// so we don't use exceessive memory when there are many
// so we don't use excessive memory when there are many
// blocked dequeue attempts waiting.
attempt->tuple.reserve(num_components());
for (int i = 0; i < num_components(); ++i) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ namespace tensorflow {

/*
* TypedConditionalAccumulatorBase is a templated companion of
* ConditionalAccumulatorBase which allows for subclassses to use different
* ConditionalAccumulatorBase which allows for subclasses to use different
* types for the input gradients. (See ConditionalAccumulator and
* SparseConditionalAccumulator.)
*
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/python/debug/wrappers/framework_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ def testSessionInit(self):
wrapper_sess.partial_run_setup(self._p)

def testInteractiveSessionInit(self):
"""The wrapper should work also on other subclassses of session.Session."""
"""The wrapper should work also on other subclasses of session.Session."""

TestDebugWrapperSession(
session.InteractiveSession(), self._dump_root, self._observer)
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/python/estimator/canned/dnn_linear_combined.py
Original file line number Diff line number Diff line change
Expand Up @@ -374,7 +374,7 @@ def _model_fn(features, labels, mode, config):


class DNNLinearCombinedRegressor(estimator.Estimator):
"""An estimator for TensorFlow Linear and DNN joined models for regresssion.
"""An estimator for TensorFlow Linear and DNN joined models for regression.
Note: This estimator is also known as wide-n-deep.
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/tensorboard/components/tf_graph_common/graph.ts
Original file line number Diff line number Diff line change
Expand Up @@ -723,7 +723,7 @@ export class MetaedgeImpl implements Metaedge {
number {
let opNode = <OpNode> h.node(edge.v);
if (opNode.outputShapes == null) {
// No shape information. Asssume a single number. This gives
// No shape information. Assume a single number. This gives
// a lower bound for the total size.
return 1;
}
Expand Down
2 changes: 1 addition & 1 deletion tensorflow/tools/tfprof/g3doc/command_line.md
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ tfprof>
-show_name_regexes .*
-hide_name_regexes IsVariableInitialized_[0-9]+,save\/.*,^zeros[0-9_]*
-account_displayed_op_only false
# supported select fileds. Availability depends on --[run_meta|checkpoint|op_log]_path.
# supported select fields. Availability depends on --[run_meta|checkpoint|op_log]_path.
# [bytes|micros|params|float_ops|occurrence|tensor_value|device|op_types]
-select params
# format: output_type:key=value,key=value...
Expand Down

0 comments on commit da1e817

Please sign in to comment.