Skip to content

Commit

Permalink
[FLINK-25783][docs-zh] Translate azure_table_storage.md page into Chi…
Browse files Browse the repository at this point in the history
…nese.

This closes apache#18766.
  • Loading branch information
RocMarshal authored and gaoyunhaii committed Feb 15, 2022
1 parent fcb3f7c commit 3c65447
Showing 1 changed file with 19 additions and 20 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -27,24 +27,24 @@ under the License.

# Azure Table Storage

This example is using the `HadoopInputFormat` wrapper to use an existing Hadoop input format implementation for accessing [Azure's Table Storage](https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview).
本例使用 `HadoopInputFormat` 包装器来使用现有的 Hadoop input format 实现访问 [Azure's Table Storage](https://docs.microsoft.com/en-us/azure/storage/tables/table-storage-overview).

1. Download and compile the `azure-tables-hadoop` project. The input format developed by the project is not yet available in Maven Central, therefore, we have to build the project ourselves.
Execute the following commands:
1. 下载并编译 `azure-tables-hadoop` 项目。该项目开发的 input format Maven 中心尚不存在,因此,我们必须自己构建该项目。
执行如下命令:

```bash
git clone https://github.com/mooso/azure-tables-hadoop.git
cd azure-tables-hadoop
mvn clean install
```

2. Setup a new Flink project using the quickstarts:
2. 使用 quickstarts 创建一个新的 Flink 项目:

```bash
curl https://flink.apache.org/q/quickstart.sh | bash
```

3. Add the following dependencies (in the `<dependencies>` section) to your `pom.xml` file:
3. 在你的 `pom.xml` 文件 `<dependencies>` 部分添加如下依赖:

```xml
<dependency>
Expand All @@ -59,13 +59,13 @@ curl https://flink.apache.org/q/quickstart.sh | bash
</dependency>
```

`flink-hadoop-compatibility` is a Flink package that provides the Hadoop input format wrappers.
`microsoft-hadoop-azure` is adding the project we've build before to our project.
`flink-hadoop-compatibility` 是一个提供 Hadoop input format 包装器的 Flink 包。
`microsoft-hadoop-azure` 可以将之前构建的部分添加到项目中。

The project is now ready for starting to code. We recommend to import the project into an IDE, such as IntelliJ. You should import it as a Maven project.
Browse to the file `Job.java`. This is an empty skeleton for a Flink job.
现在可以开始进行项目的编码。我们建议将项目导入 IDE,例如 IntelliJ。你应该将其作为 Maven 项目导入。
跳转到文件 `Job.java`。这是 Flink 作业的初始框架。

Paste the following code:
粘贴如下代码:

```java
import java.util.Map;
Expand All @@ -84,22 +84,22 @@ import com.microsoft.windowsazure.storage.table.EntityProperty;
public class AzureTableExample {

public static void main(String[] args) throws Exception {
// set up the execution environment
// 安装 execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env.setRuntimeMode(RuntimeExecutionMode.BATCH);
// create a AzureTableInputFormat, using a Hadoop input format wrapper
// 使用 Hadoop input format 包装器创建 AzureTableInputFormat
HadoopInputFormat<Text, WritableEntity> hdIf = new HadoopInputFormat<Text, WritableEntity>(new AzureTableInputFormat(), Text.class, WritableEntity.class, new Job());

// set the Account URI, something like: https://apacheflink.table.core.windows.net
// 设置 Account URI,如 https://apacheflink.table.core.windows.net
hdIf.getConfiguration().set(azuretableconfiguration.Keys.ACCOUNT_URI.getKey(), "TODO");
// set the secret storage key here
// 设置存储密钥
hdIf.getConfiguration().set(AzureTableConfiguration.Keys.STORAGE_KEY.getKey(), "TODO");
// set the table name here
// 在此处设置表名
hdIf.getConfiguration().set(AzureTableConfiguration.Keys.TABLE_NAME.getKey(), "TODO");

DataStream<Tuple2<Text, WritableEntity>> input = env.createInput(hdIf);
// a little example how to use the data in a mapper.
// 如何在 map 中使用数据的简单示例。
DataStream<String> fin = input.map(new MapFunction<Tuple2<Text,WritableEntity>, String>() {
@Override
public String map(Tuple2<Text, WritableEntity> arg0) throws Exception {
Expand All @@ -114,15 +114,14 @@ public class AzureTableExample {
}
});

// emit result (this works only locally)
// 发送结果(这仅在本地模式有效)
fin.print();

// execute program
// 执行程序
env.execute("Azure Example");
}
}
```

The example shows how to access an Azure table and turn data into Flink's `DataStream` (more specifically, the type of the set is `DataStream<Tuple2<Text, WritableEntity>>`). With the `DataStream`, you can apply all known transformations to the DataStream.
该示例展示了如何访问 Azure 表和如何将数据转换为 Flink 的 `DataStream`(更具体地说,集合的类型是 `DataStream<Tuple2<Text, WritableEntity>>`)。你可以将所有已知的 transformations 应用到 DataStream 实例。

{{< top >}}

0 comments on commit 3c65447

Please sign in to comment.