forked from nd-ball/py-irt
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: Test Plan:
- Loading branch information
Showing
1 changed file
with
280 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,280 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2019 John Lalor <[email protected]> and Pedro Rodriguez <[email protected]> | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
|
||
# pylint: disable=unused-argument,unused-variable,not-callable,no-name-in-module,no-member,protected-access | ||
from functools import partial | ||
from py_irt.models import abstract_model | ||
|
||
import pandas as pd | ||
import pyro | ||
import pyro.distributions as dist | ||
import torch | ||
import torch.distributions.constraints as constraints | ||
from pyro.infer import EmpiricalMarginal | ||
from rich.console import Console | ||
|
||
import numpy as np | ||
|
||
console = Console() | ||
|
||
|
||
@abstract_model.IrtModel.register("tutorial") | ||
class FourParamLog(abstract_model.IrtModel): | ||
"""3PL IRT Model, with disc, diff, skill""" | ||
|
||
# pylint: disable=not-callable | ||
def __init__( | ||
self, | ||
*, | ||
device: str, | ||
num_items: int, | ||
num_subjects: int, | ||
verbose: bool = False, | ||
**kwargs, | ||
): | ||
super().__init__( | ||
num_items=num_items, | ||
num_subjects=num_subjects, | ||
device=device, | ||
verbose=verbose, | ||
) | ||
|
||
def model_hierarchical(self, subjects, items, obs): | ||
mu_b = pyro.sample( | ||
"mu_b", | ||
dist.Normal( | ||
torch.tensor(0.0, device=self.device), | ||
torch.tensor(1.0e6, device=self.device), | ||
), | ||
) | ||
u_b = pyro.sample( | ||
"u_b", | ||
dist.Gamma( | ||
torch.tensor(1.0, device=self.device), | ||
torch.tensor(1.0, device=self.device), | ||
), | ||
) | ||
|
||
mu_theta = pyro.sample( | ||
"mu_theta", | ||
dist.Normal( | ||
torch.tensor(0.0, device=self.device), | ||
torch.tensor(1.0e6, device=self.device), | ||
), | ||
) | ||
u_theta = pyro.sample( | ||
"u_theta", | ||
dist.Gamma( | ||
torch.tensor(1.0, device=self.device), | ||
torch.tensor(1.0, device=self.device), | ||
), | ||
) | ||
|
||
mu_gamma = pyro.sample( | ||
"mu_gamma", | ||
dist.Normal( | ||
torch.tensor(0.0, device=self.device), | ||
torch.tensor(1.0e6, device=self.device), | ||
), | ||
) | ||
u_gamma = pyro.sample( | ||
"u_gamma", | ||
dist.Gamma( | ||
torch.tensor(1.0, device=self.device), | ||
torch.tensor(1.0, device=self.device), | ||
), | ||
) | ||
|
||
with pyro.plate("thetas", self.num_subjects, device=self.device): | ||
ability = pyro.sample("theta", dist.Normal(mu_theta, 1.0 / u_theta)) | ||
|
||
with pyro.plate("bs", self.num_items, device=self.device): | ||
diff = pyro.sample("b", dist.Normal(mu_b, 1.0 / u_b)) | ||
|
||
with pyro.plate("gammas", self.num_items, device=self.device): | ||
# We want to make disc non-negative, which we can implement by changing from: | ||
# disc ~ Normal | ||
# To: | ||
# log disc ~ Normal | ||
# Re-arranging: | ||
# disc ~ exp(Normal) | ||
# Or just draw from LogNormal | ||
disc = pyro.sample("gamma", dist.LogNormal(mu_gamma, 1.0 / u_gamma)) | ||
|
||
with pyro.plate("observe_data", obs.size(0)): | ||
p_star = torch.sigmoid(disc[items] * (ability[subjects] - diff[items])) | ||
pyro.sample( | ||
"obs", | ||
dist.Bernoulli(probs=p_star), | ||
obs=obs, | ||
) | ||
|
||
def guide_hierarchical(self, subjects, items, obs): | ||
loc_mu_b_param = pyro.param("loc_mu_b", torch.tensor(0.0, device=self.device)) | ||
scale_mu_b_param = pyro.param( | ||
"scale_mu_b", | ||
torch.tensor(1.0e2, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
loc_mu_gamma_param = pyro.param( | ||
"loc_mu_gamma", torch.tensor(0.0, device=self.device) | ||
) | ||
scale_mu_gamma_param = pyro.param( | ||
"scale_mu_gamma", | ||
torch.tensor(1.0e2, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
loc_mu_theta_param = pyro.param( | ||
"loc_mu_theta", torch.tensor(0.0, device=self.device) | ||
) | ||
scale_mu_theta_param = pyro.param( | ||
"scale_mu_theta", | ||
torch.tensor(1.0e2, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
alpha_b_param = pyro.param( | ||
"alpha_b", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
beta_b_param = pyro.param( | ||
"beta_b", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
alpha_gamma_param = pyro.param( | ||
"alpha_gamma", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
beta_gamma_param = pyro.param( | ||
"beta_gamma", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
alpha_theta_param = pyro.param( | ||
"alpha_theta", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
beta_theta_param = pyro.param( | ||
"beta_theta", | ||
torch.tensor(1.0, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
m_theta_param = pyro.param( | ||
"loc_ability", torch.zeros(self.num_subjects, device=self.device) | ||
) | ||
s_theta_param = pyro.param( | ||
"scale_ability", | ||
torch.ones(self.num_subjects, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
m_b_param = pyro.param( | ||
"loc_diff", torch.zeros(self.num_items, device=self.device) | ||
) | ||
s_b_param = pyro.param( | ||
"scale_diff", | ||
torch.ones(self.num_items, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
m_gamma_param = pyro.param( | ||
"loc_disc", torch.zeros(self.num_items, device=self.device) | ||
) | ||
s_gamma_param = pyro.param( | ||
"scale_disc", | ||
torch.ones(self.num_items, device=self.device), | ||
constraint=constraints.positive, | ||
) | ||
|
||
# sample statements | ||
mu_b = pyro.sample("mu_b", dist.Normal(loc_mu_b_param, scale_mu_b_param)) | ||
u_b = pyro.sample("u_b", dist.Gamma(alpha_b_param, beta_b_param)) | ||
|
||
mu_gamma = pyro.sample( | ||
"mu_gamma", dist.Normal(loc_mu_gamma_param, scale_mu_gamma_param) | ||
) | ||
u_gamma = pyro.sample( | ||
"u_gamma", dist.Gamma(alpha_gamma_param, beta_gamma_param) | ||
) | ||
|
||
mu_theta = pyro.sample( | ||
"mu_theta", dist.Normal(loc_mu_theta_param, scale_mu_theta_param) | ||
) | ||
u_theta = pyro.sample( | ||
"u_theta", dist.Gamma(alpha_theta_param, beta_theta_param) | ||
) | ||
|
||
with pyro.plate("thetas", self.num_subjects, device=self.device): | ||
pyro.sample("theta", dist.Normal(m_theta_param, s_theta_param)) | ||
|
||
with pyro.plate("bs", self.num_items, device=self.device): | ||
pyro.sample("b", dist.Normal(m_b_param, s_b_param)) | ||
|
||
with pyro.plate("gammas", self.num_items, device=self.device): | ||
pyro.sample("gamma", dist.LogNormal(m_gamma_param, s_gamma_param)) | ||
|
||
def export(self): | ||
return { | ||
"ability": pyro.param("loc_ability").data.tolist(), | ||
"diff": pyro.param("loc_diff").data.tolist(), | ||
"disc": pyro.param("loc_disc").data.tolist(), | ||
} | ||
|
||
def predict(self, subjects, items, params_from_file=None): | ||
"""predict p(correct | params) for a specified list of model, item pairs""" | ||
if params_from_file is not None: | ||
model_params = params_from_file | ||
else: | ||
model_params = self.export() | ||
abilities = np.array([model_params["ability"][i] for i in subjects]) | ||
diffs = np.array([model_params["diff"][i] for i in items]) | ||
discs = np.array([model_params["disc"][i] for i in items]) | ||
return 1 / (1 + np.exp(-discs * (abilities - diffs))) | ||
|
||
def get_guide(self): | ||
return self.guide_hierarchical | ||
|
||
def get_model(self): | ||
return self.model_hierarchical | ||
|
||
def summary(self, traces, sites): | ||
marginal = ( | ||
EmpiricalMarginal(traces, sites) | ||
._get_samples_and_weights()[0] | ||
.detach() | ||
.cpu() | ||
.numpy() | ||
) | ||
print(marginal) | ||
site_stats = {} | ||
for i in range(marginal.shape[1]): | ||
site_name = sites[i] | ||
marginal_site = pd.DataFrame(marginal[:, i]).transpose() | ||
describe = partial( | ||
pd.Series.describe, percentiles=[0.05, 0.25, 0.5, 0.75, 0.95] | ||
) | ||
site_stats[site_name] = marginal_site.apply(describe, axis=1)[ | ||
["mean", "std", "5%", "25%", "50%", "75%", "95%"] | ||
] | ||
return site_stats |