-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3c93d56
commit a4cad85
Showing
1 changed file
with
59 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
import scipy.signal | ||
import librosa | ||
|
||
class ISTFT(torch.nn.Module): | ||
def __init__(self, filter_length=1024, hop_length=512, window='hanning', center=True): | ||
super(ISTFT, self).__init__() | ||
|
||
self.filter_length = filter_length | ||
self.hop_length = hop_length | ||
self.center = center | ||
|
||
win_cof = scipy.signal.get_window(window, filter_length) | ||
self.inv_win = self.inverse_stft_window(win_cof, hop_length) | ||
|
||
fourier_basis = np.fft.fft(np.eye(self.filter_length)) | ||
cutoff = int((self.filter_length / 2 + 1)) | ||
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), | ||
np.imag(fourier_basis[:cutoff, :])]) | ||
inverse_basis = torch.FloatTensor(self.inv_win * \ | ||
np.linalg.pinv(fourier_basis).T[:, None, :]) | ||
|
||
self.register_buffer('inverse_basis', inverse_basis.float()) | ||
|
||
# Use equation 8 from Griffin, Lim. | ||
# Paper: "Signal Estimation from Modified Short-Time Fourier Transform" | ||
# Reference implementation: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/signal/spectral_ops.py | ||
# librosa use equation 6 from paper: https://github.com/librosa/librosa/blob/0dcd53f462db124ed3f54edf2334f28738d2ecc6/librosa/core/spectrum.py#L302-L311 | ||
def inverse_stft_window(self, window, hop_length): | ||
window_length = len(window) | ||
denom = window ** 2 | ||
overlaps = -(-window_length // hop_length) # Ceiling division. | ||
denom = np.pad(denom, (0, overlaps * hop_length - window_length), 'constant') | ||
denom = np.reshape(denom, (overlaps, hop_length)).sum(0) | ||
denom = np.tile(denom, (overlaps, 1)).reshape(overlaps * hop_length) | ||
return window / denom[:window_length] | ||
|
||
def forward(self, real_imag_part, length=None): | ||
# Note: the size of real_image_part is (B, 2, T, F) | ||
real_imag_part = torch.cat((real_imag_part[:, 0, :, :], real_imag_part[:, 1, :, :]), dim=-1).permute(0, 2, 1) | ||
|
||
inverse_transform = F.conv_transpose1d(real_imag_part, | ||
self.inverse_basis.to(real_imag_part.device), | ||
stride=self.hop_length, | ||
padding=0) | ||
|
||
padded = int(self.filter_length // 2) | ||
if length is None: | ||
if self.center: | ||
inverse_transform = inverse_transform[:, :, padded:-padded] | ||
else: | ||
if self.center: | ||
inverse_transform = inverse_transform[:, :, padded:] | ||
inverse_transform = inverse_transform[:, :, :length] | ||
|
||
return inverse_transform |