-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_only_box.py
260 lines (238 loc) · 11.5 KB
/
train_only_box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# %% set up environment
import numpy as np
import matplotlib.pyplot as plt
import os
import random
join = os.path.join
from tqdm import tqdm
from time import time
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from utils.get_prompts import find_all_info
import monai
from segment_anything import sam_model_registry
from segment_anything.utils.transforms import ResizeLongestSide
import argparse
# set seeds
torch.manual_seed(3407)
np.random.seed(2023)
def collate_fn(batch):
return batch
#%% create a dataset class to load npz data and return back image embeddings and ground truth
class NpzDataset(Dataset):
def __init__(self, data_root):
self.data_root = data_root
self.npz_files = sorted(os.listdir(self.data_root))
self.resize_transform = ResizeLongestSide(target_length=1024)
def __len__(self):
return len(self.npz_files)
def __getitem__(self, index):
npz_data = np.load(join(self.data_root, self.npz_files[index]))
gt2D = npz_data['gts']
label_list = npz_data['label_except_bk'].tolist()
img_embed = npz_data['img_embeddings']
_, _, box_list = find_all_info(mask=gt2D,
label_list=label_list,
point_num=10
)
# convert img embedding, gt_mask, bounding box to torch tensor
box = torch.tensor(box_list).float() # B, 4
img_embed = torch.tensor(img_embed).float()
gt2D = torch.tensor(gt2D).long() # B, ori_H, ori_W
# scale to original size
box = self.resize_transform.apply_boxes_torch(box, (gt2D.shape[-2], gt2D.shape[-1]))
return {"img_embed": img_embed,
"gt2D": gt2D,
"box": box,
"image_ori_size": npz_data['image_shape'],
"size_before_pad": npz_data['resized_size_before_padding']
}
def dice_coefficient(y_true, y_pred):
"""
y_true: GT, [N, W, H]
Y_pred: target, [M, W, H]
N, M: number
W, H: weight and height of the masks
Returns:
dice_matrix [N, M]
dice_max_index [N,] indexes of prediceted masks with the highest DICE between each N GTs
dice_max_value [N,] N values of the highest DICE
"""
smooth = 0.1
y_true_f = y_true.reshape(y_true.shape[0], -1)
y_pred_f = y_pred.reshape(y_pred.shape[0], -1)
intersection = np.matmul(y_true_f.astype(float), y_pred_f.T.astype(float))
dice_matrix = (2. * intersection + smooth) / (y_true_f.sum(1).reshape(y_true_f.shape[0],-1) + y_pred_f.sum(1) + smooth)
dice_max_index, dice_max_value = dice_matrix.argmax(1), dice_matrix.max(1)
return dice_matrix, dice_max_index, dice_max_value
def train_sam(model: nn.Module, optimizer, train_loader, epoch, device, criterion):
epoch_start_time = time()
epoch_loss = 0
model.train()
print("==========Training==========")
for step, batched_input in enumerate(tqdm(train_loader)):
outputs = []
# do not compute gradients for image encoder and prompt encoder
with torch.no_grad():
none_grad_features = {"sparse": {}, "dense": {}}
for idx, image_record in enumerate(batched_input):
sparse_embeddings, dense_embeddings = model.prompt_encoder(
points=None,
boxes=image_record["box"].to(device),
masks=None,
)
none_grad_features["sparse"][idx] = sparse_embeddings
none_grad_features["dense"][idx] = dense_embeddings
batched_loss = 0
for id, im_record in enumerate(batched_input):
# low_res_masks.shape == (B, M, 256, 256) M is set to 1
low_res_masks, iou_predictions = model.mask_decoder(
image_embeddings=im_record["img_embed"].unsqueeze(0).to(device), # (1, 256, 64, 64) !!1 = batch size
image_pe=model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64) !!1 = batch size
sparse_prompt_embeddings=none_grad_features["sparse"][id], # (B, 2, 256) !!B = target num instead of batch size
dense_prompt_embeddings=none_grad_features["dense"][id], # (B, 256, 64, 64) !!B = target num instead of batch size
multimask_output=False,
)
masks = model.postprocess_masks( # upscale + eliminate padding + restore to ori size
low_res_masks,
input_size=tuple(im_record["size_before_pad"]),
original_size=tuple(im_record["image_ori_size"]),
)
outputs.append({
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
"gt2D": im_record["gt2D"].to(device)
})
# first ele: 1, B, ori_H, ori_W
# second ele: 1, B, ori_H, ori_W
batched_loss += criterion(masks.squeeze(1).unsqueeze(0), im_record["gt2D"].to(device).unsqueeze(0)) # considering the multi-object situation
loss = batched_loss / len(batched_input)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss /= (step + 1)
print(f'Time: {datetime.now().strftime("%Y%m%d-%H%M")}, Epoch: {epoch}, Loss: {epoch_loss}')
return epoch_loss, time() - epoch_start_time
def valid_sam(model: nn.Module, valid_loader, epoch, device):
model.eval()
epoch_dsc = 0.
print("==========Validation==========")
for step, batched_input in enumerate(tqdm(valid_loader)):
outputs = []
with torch.no_grad():
batched_dsc = 0.
for image_record in batched_input:
sparse_embeddings, dense_embeddings = model.prompt_encoder(
points=None,
boxes=image_record["box"].to(device),
masks=None,
)
# low_res_masks.shape == (B, M, 256, 256) M is set to 1
low_res_masks, iou_predictions = model.mask_decoder(
image_embeddings=image_record["img_embed"].unsqueeze(0).to(device), # (1, 256, 64, 64) !!1 = batch size
image_pe=model.prompt_encoder.get_dense_pe(), # (1, 256, 64, 64) !!1 = batch size
sparse_prompt_embeddings=sparse_embeddings, # (B, N, 256) !!B = target num instead of batch size
dense_prompt_embeddings=dense_embeddings, # (B, 256, 64, 64) !!B = target num instead of batch size
multimask_output=True,
)
masks = model.postprocess_masks( # upscale + eliminate padding + restore to ori size
low_res_masks,
input_size=tuple(image_record["size_before_pad"]),
original_size=tuple(image_record["image_ori_size"]),
)
outputs.append({
"masks": masks,
"iou_predictions": iou_predictions,
"low_res_logits": low_res_masks,
"gt2D": image_record["gt2D"].to(device)
})
# compute foreground dice
masks = masks > model.mask_threshold
masks = masks.cpu().numpy() # B, 1, ori_H, ori_W
gt2D = np.array(image_record["gt2D"]) # B, ori_H, ori_W
target_mean_dsc = 0.
for i in range(len(gt2D)): # each target
cur_gt = gt2D[i]
_, _, dice_max_value = dice_coefficient(y_true=cur_gt[None, :, :], y_pred=masks[i])
target_mean_dsc += dice_max_value.squeeze(0)
batched_dsc += target_mean_dsc / len(gt2D)
dsc = batched_dsc / len(batched_input)
epoch_dsc += dsc
epoch_dsc /= (step + 1)
print(f'Time: {datetime.now().strftime("%Y%m%d-%H%M")}, Epoch: {epoch}, DSC: {epoch_dsc}')
return epoch_dsc
if __name__ == "__main__":
# Task = "Heart_2d"
# %% set up parser
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--tr_npz_path', type=str, default=f'data/precompute_vit_b/train', help='path to training npz files (im_emb, gt)')
parser.add_argument('-j', '--val_npz_path', type=str, default=f'data/precompute_vit_b/train', help='path to validation npz files (im_emb, gt)')
parser.add_argument('--model_type', type=str, default='vit_b')
parser.add_argument('--checkpoint', type=str, default='sam_vit_b_01ec64.pth', help='original sam checkpoint path')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--work_dir', type=str, default='work_dir_b')
# train
parser.add_argument('--num_epochs', type=int, default=2)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0.01)
args = parser.parse_args()
# %% set up model for fine-tuning
Task = "finetune_data"
device = args.device
model_save_path = join(args.work_dir, Task)
os.makedirs(model_save_path, exist_ok=True)
sam_model = sam_model_registry[args.model_type](checkpoint=args.checkpoint, device=device).to(device)
# Set up the optimizer, hyperparameter tuning will improve performance here
optimizer = torch.optim.AdamW(sam_model.mask_decoder.parameters(), lr=args.lr, weight_decay=args.weight_decay)
seg_loss = monai.losses.DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean')
#%% train & valid
num_epochs = args.num_epochs
losses = []
dscs = []
times = []
best_loss, best_dsc = 1e10, 0.
train_dataset = NpzDataset(args.tr_npz_path)
val_dataset = NpzDataset(args.val_npz_path)
print("Number of training samples: ", len(train_dataset))
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers,
pin_memory=True, shuffle=True, collate_fn=collate_fn)
valid_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.num_workers,
pin_memory=True, shuffle=False, collate_fn=collate_fn)
for epoch in range(num_epochs):
# train
epoch_loss, runtime = train_sam(sam_model, optimizer, train_dataloader, epoch, device, criterion=seg_loss)
losses.append(epoch_loss)
times.append(runtime)
# valid
epoch_dsc = valid_sam(sam_model, valid_dataloader, epoch, device)
dscs.append(epoch_dsc)
# save the model checkpoint
torch.save(sam_model.state_dict(), join(model_save_path, f'medsam_box_last.pth'))
# save the best model
if epoch_dsc > best_dsc:
best_dsc = epoch_dsc
print("Update: saving {} model as the best checkpoint".format(epoch))
torch.save(sam_model.state_dict(), join(model_save_path, f'medsam_box_best.pth'))
# %% plot loss
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))
ax1.plot(losses)
ax1.set_title("Dice + Cross Entropy Loss")
ax1.set_xlabel("Epoch")
ax1.set_ylabel("Loss")
ax2.plot(dscs)
ax2.set_title("Dice of valid set")
ax2.set_xlabel("Epoch")
ax2.set_ylabel("Dice")
ax3.plot(times)
ax3.set_title("Epoch Running Time")
ax3.set_xlabel("Epoch")
ax3.set_ylabel("Time (s)")
fig.savefig(join(model_save_path, f"medsam_box_record.png"))
plt.close()