Skip to content

Codes and models for Medical Image Analysis (MIA) 2023 paper. Segment Anything Model for Medical Images?.

Notifications You must be signed in to change notification settings

yuhoo0302/Segment-Anything-Model-for-Medical-Images

Repository files navigation

Segment-Anything-Model-for-Medical-Images

Implementation of "Segment Anything Model for Medical Images?" in pytorch --for finetuning the SAM with box prompts.

Arxiv link: https://arxiv.org/pdf/2304.14660.pdf

MIA version link: https://www.sciencedirect.com/science/article/pii/S1361841523003213

Our work has been accepted by Medical Image Analysis (MedIA) 2023!

Usage

1. Prepare data and segmentation information json files corresponding to each test set.

Json file content.

"Info" refers to the segmentation target in this dataset, while "color" is the ground truth pixel value corresponding to the target.

{
   "info": {
       "1": "LeftVentricle",
       "2": "LeftVentricularMyocardium",
       "3": "RightVentricle"
   },
   "color": {
       "1": 85,
       "2": 170,
       "3": 255
   }
}
Dataset distribution.
 train: ../data/train_data/images/
 val: ../data/train_data/images/
 test: ../data/test_data/dataset_name/images/
 
 ├── train_data          
 │   ├── images        
 │   │   ├── 000001.png
 │   │   ├── 000002.png
 │   │   └── 000003.png
 │   └── labels         
 │       ├── 00001.png
 │       ├── 00002.png
 │       └── 00003.png
 └── val_data           
 |   ├── images        
 |   │   ├── 000001.png
 |   │   ├── 000002.png
 |   │   └── 000003.png
 |   └── labels         
 |       ├── 00001.png
 |       ├── 00002.png
 |       └── 00003.png
 └── test_data          
     ├── dataset1        
     │   ├── images
     |   |     ├── 000001.png
     |   │     ├── 000002.png
     |   |     └── 000003.png
     │   └── labels
     |         ├── 000001.png
     |         ├── 000002.png
     |         └── 000003.png
     └── dataset2         
         ├── images
         |     ├── 000001.png
         │     ├── 000002.png
         |     └── 000003.png
         └── labels
               ├── 000001.png
               ├── 000002.png
               └── 000003.png

2. Generate embedding for each single image.

$ python pre_grey_rgb2D.py         --img_path  data/train_data/images    --gt_path data/train_data/labels                       --checkpoint sam_vit_b_01ec64.pth              #for preparing training data (embeddings) with ViT-B  
$ python pre_grey_rgb2D_Huge.py    --img_path  data/test_data            --gt_path data/test_data     --task_name 22_Heart       --checkpoint sam_vit_b_01ec64.pth              #for preparing testing data (embeddings) with ViT-B

3. Finetune SAM with your own data.

$ python train_only_box.py    --tr_npz_path data/precompute_vit_b/train  --val_npz_path data/precompute_vit_b/valid --model_type vit_b # finetune ViT-B
                              --tr_npz_path data/precompute_vit_h/train  --val_npz_path data/precompute_vit_h/valid --model_type vit_h # finetune ViT-H

4. Test on finetuned models and output the Dice results.

$ python test_only_box.py    

5. Calculation of all the indicators (Dice, IOU, HD, etc.).

$ python cal_matric.py       

Our pretrained weights

Checkpoints download path: https://drive.google.com/drive/folders/1jry-07RxGYQnT9cQE8weuCZurDCu58pj?usp=sharing

COSMOS 1050K Dataset

We collected and sorted 53 public datasets to build the large COSMOS 1050K medical image segmentation dataset. Following are the links to the datasets used in our paper.

Ownership and license of the datasets belong to their corresponding original papers, authors, or competition organizers. If you use the datasets, please cite the corresponding paper or links.

Links

AbdomenCT-1K

https://abdomenct-1k-fully-supervised-learning.grand-challenge.org/

ACDC

https://www.creatis.insa-lyon.fr/Challenge/acdc/

AMOS 2022

https://amos22.grand-challenge.org/

AutoLaparo

https://autolaparo.github.io/

BrainPTM 2021

https://brainptm-2021.grand-challenge.org/

BraTS20

https://www.med.upenn.edu/cbica/brats2020/data.html

CAMUS

https://www.creatis.insa-lyon.fr/Challenge/camus/databases.html

CellSeg Challenge-NeurIPS 2022

https://neurips22-cellseg.grand-challenge.org/

CHAOS

https://zenodo.org/record/3431873#.YKIkTfkzbIU

CHASE-DB1

https://blogs.kingston.ac.uk/retinal/chasedb1/

Chest CT Segmentation

https://www.kaggle.com/datasets/polomarco/chest-ct-segmentation

CRAG

https://warwick.ac.uk/fac/cross_fac/tia/data/

https://warwick.ac.uk/fac/cross_fac/tia/data/mildnet/

crossMoDA

https://crossmoda.grand-challenge.org/

CVC-ClinicDB

https://polyp.grand-challenge.org/CVCClinicDB/

DRIVE

https://drive.grand-challenge.org/

EndoTect 2020

https://endotect.com/

ETIS-Larib Polyp DB

https://polyp.grand-challenge.org/

FeTA

https://feta.grand-challenge.org/

HaN-Seg

https://han-seg2023.grand-challenge.org/

I2CVB

https://i2cvb.github.io/

iChallenge-AMD

https://amd.grand-challenge.org/

iChallenge-PALM

https://palm.grand-challenge.org/

IDRiD 2018

https://idrid.grand-challenge.org/

iSeg 2019

https://iseg2019.web.unc.edu/

ISIC 2018

https://challenge.isic-archive.com/data#2016

IXI

https://brain-development.org/ixi-dataset/

KiPA22

https://kipa22.grand-challenge.org/

KiTS19

https://kits19.grand-challenge.org/

KiTS21

https://kits-challenge.org/kits21/

Kvasir-Instrumen

https://datasets.simula.no/kvasir-instrument/

Kvasir-SEG

https://datasets.simula.no/kvasir-seg/

LiVScar

https://figshare.com/articles/figure/Left_ventricular_LV_scar_dataset/4214622?file=6875637

LUNA16

https://luna16.grand-challenge.org/

M&Ms

https://www.ub.edu/mnms/

Montgomery County CXR Set

https://data.lhncbc.nlm.nih.gov/public/Tuberculosis-Chest-X-ray-Datasets/Montgomery-County-CXR-Set/MontgomerySet/index.html

MRSpineSeg

https://www.spinesegmentation-challenge.com/

https://github.com/pangshumao/SpineParseNet

MSD

http://medicaldecathlon.com

Multi-Atlas Labeling Beyond the Cranial Vault(Abdomen):MALBCV-Abdomen

https://www.synapse.org/#!Synapse:syn3193805/wiki/217752

NCI-ISBI 2013

https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures

PROMISE12

https://promise12.grand-challenge.org/

QUBIQ 2021

https://qubiq21.grand-challenge.org/

SIIM-ACR

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

SKI10

https://ski10.grand-challenge.org/

SLIVER07

https://sliver07.grand-challenge.org/

STARE

https://cecas.clemson.edu/~ahoover/stare/

TN-SCUI 2020

https://tn-scui2020.grand-challenge.org/

VerSe19&VerSe20

https://github.com/anjany/verse

Warwick-QU

https://warwick.ac.uk/fac/cross_fac/tia/data/ https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/download/

WORD

https://github.com/HiLab-git/WORD

EPFL_EM

https://www.epfl.ch/labs/cvlab/data/data-em/

ssTEM

https://imagej.net/events/isbi-2012-segmentation-challenge

TotalSegmentator

https://github.com/wasserth/TotalSegmentator

4C2021 C04 TLS01

https://aistudio.baidu.com/aistudio/projectdetail/1952488?channelType=0&channel=0

Acknowledgments

Our code is based on Segment Anything and MedSAM. We appreciate the authors for their great works. We also sincerely appreciate all the challenge organizers and owners for providing the public medical image segmentation datasets.

Citation

If you find the code useful for your research, please cite our paper.

@article{huang2024segment,
  title={Segment anything model for medical images?},
  author={Huang, Yuhao and Yang, Xin and Liu, Lian and Zhou, Han and Chang, Ao and Zhou, Xinrui and Chen, Rusi and Yu, Junxuan and Chen, Jiongquan and Chen, Chaoyu and others},
  journal={Medical Image Analysis},
  volume={92},
  pages={103061},
  year={2024},
  publisher={Elsevier}
}

About

Codes and models for Medical Image Analysis (MIA) 2023 paper. Segment Anything Model for Medical Images?.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages