forked from kuixu/kitti_object_vis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kitti_util.py
798 lines (656 loc) · 25.9 KB
/
kitti_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
""" Helper methods for loading and parsing KITTI data.
Author: Charles R. Qi, Kui Xu
Date: September 2017/2018
"""
from __future__ import print_function
import numpy as np
import cv2
import os, math
from scipy.optimize import leastsq
from PIL import Image
TOP_Y_MIN = -30
TOP_Y_MAX = +30
TOP_X_MIN = 0
TOP_X_MAX = 100
TOP_Z_MIN = -3.5
TOP_Z_MAX = 0.6
TOP_X_DIVISION = 0.2
TOP_Y_DIVISION = 0.2
TOP_Z_DIVISION = 0.3
cbox = np.array([[0, 70.4], [-40, 40], [-3, 2]])
class Object2d(object):
""" 2d object label """
def __init__(self, label_file_line):
data = label_file_line.split(" ")
# extract label, truncation, occlusion
self.img_name = int(data[0]) # 'Car', 'Pedestrian', ...
self.typeid = int(data[1]) # truncated pixel ratio [0..1]
self.prob = float(data[2])
self.box2d = np.array([int(data[3]), int(data[4]), int(data[5]), int(data[6])])
def print_object(self):
print(
"img_name, typeid, prob: %s, %d, %f"
% (self.img_name, self.typeid, self.prob)
)
print(
"2d bbox (x0,y0,x1,y1): %d, %d, %d, %d"
% (self.box2d[0], self.box2d[1], self.box2d[2], self.box2d[3])
)
class Object3d(object):
""" 3d object label """
def __init__(self, label_file_line):
data = label_file_line.split(" ")
data[1:] = [float(x) for x in data[1:]]
# extract label, truncation, occlusion
self.type = data[0] # 'Car', 'Pedestrian', ...
self.truncation = data[1] # truncated pixel ratio [0..1]
self.occlusion = int(
data[2]
) # 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
self.alpha = data[3] # object observation angle [-pi..pi]
# extract 2d bounding box in 0-based coordinates
self.xmin = data[4] # left
self.ymin = data[5] # top
self.xmax = data[6] # right
self.ymax = data[7] # bottom
self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
# extract 3d bounding box information
self.h = data[8] # box height
self.w = data[9] # box width
self.l = data[10] # box length (in meters)
self.t = (data[11], data[12], data[13]) # location (x,y,z) in camera coord.
self.ry = data[14] # yaw angle (around Y-axis in camera coordinates) [-pi..pi]
def estimate_diffculty(self):
""" Function that estimate difficulty to detect the object as defined in kitti website"""
# height of the bounding box
bb_height = np.abs(self.xmax - self.xmin)
if bb_height >= 40 and self.occlusion == 0 and self.truncation <= 0.15:
return "Easy"
elif bb_height >= 25 and self.occlusion in [0, 1] and self.truncation <= 0.30:
return "Moderate"
elif (
bb_height >= 25 and self.occlusion in [0, 1, 2] and self.truncation <= 0.50
):
return "Hard"
else:
return "Unknown"
def print_object(self):
print(
"Type, truncation, occlusion, alpha: %s, %d, %d, %f"
% (self.type, self.truncation, self.occlusion, self.alpha)
)
print(
"2d bbox (x0,y0,x1,y1): %f, %f, %f, %f"
% (self.xmin, self.ymin, self.xmax, self.ymax)
)
print("3d bbox h,w,l: %f, %f, %f" % (self.h, self.w, self.l))
print(
"3d bbox location, ry: (%f, %f, %f), %f"
% (self.t[0], self.t[1], self.t[2], self.ry)
)
print("Difficulty of estimation: {}".format(self.estimate_diffculty()))
class Calibration(object):
""" Calibration matrices and utils
3d XYZ in <label>.txt are in rect camera coord.
2d box xy are in image2 coord
Points in <lidar>.bin are in Velodyne coord.
y_image2 = P^2_rect * x_rect
y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo
x_ref = Tr_velo_to_cam * x_velo
x_rect = R0_rect * x_ref
P^2_rect = [f^2_u, 0, c^2_u, -f^2_u b^2_x;
0, f^2_v, c^2_v, -f^2_v b^2_y;
0, 0, 1, 0]
= K * [1|t]
image2 coord:
----> x-axis (u)
|
|
v y-axis (v)
velodyne coord:
front x, left y, up z
rect/ref camera coord:
right x, down y, front z
Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf
TODO(rqi): do matrix multiplication only once for each projection.
"""
def __init__(self, calib_filepath, from_video=False):
if from_video:
calibs = self.read_calib_from_video(calib_filepath)
else:
calibs = self.read_calib_file(calib_filepath)
# Projection matrix from rect camera coord to image2 coord
self.P = calibs["P2"]
self.P = np.reshape(self.P, [3, 4])
# Rigid transform from Velodyne coord to reference camera coord
self.V2C = calibs["Tr_velo_to_cam"]
self.V2C = np.reshape(self.V2C, [3, 4])
self.C2V = inverse_rigid_trans(self.V2C)
# Rotation from reference camera coord to rect camera coord
self.R0 = calibs["R0_rect"]
self.R0 = np.reshape(self.R0, [3, 3])
# Camera intrinsics and extrinsics
self.c_u = self.P[0, 2]
self.c_v = self.P[1, 2]
self.f_u = self.P[0, 0]
self.f_v = self.P[1, 1]
self.b_x = self.P[0, 3] / (-self.f_u) # relative
self.b_y = self.P[1, 3] / (-self.f_v)
def read_calib_file(self, filepath):
""" Read in a calibration file and parse into a dictionary.
Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
"""
data = {}
with open(filepath, "r") as f:
for line in f.readlines():
line = line.rstrip()
if len(line) == 0:
continue
key, value = line.split(":", 1)
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
def read_calib_from_video(self, calib_root_dir):
""" Read calibration for camera 2 from video calib files.
there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir
"""
data = {}
cam2cam = self.read_calib_file(
os.path.join(calib_root_dir, "calib_cam_to_cam.txt")
)
velo2cam = self.read_calib_file(
os.path.join(calib_root_dir, "calib_velo_to_cam.txt")
)
Tr_velo_to_cam = np.zeros((3, 4))
Tr_velo_to_cam[0:3, 0:3] = np.reshape(velo2cam["R"], [3, 3])
Tr_velo_to_cam[:, 3] = velo2cam["T"]
data["Tr_velo_to_cam"] = np.reshape(Tr_velo_to_cam, [12])
data["R0_rect"] = cam2cam["R_rect_00"]
data["P2"] = cam2cam["P_rect_02"]
return data
def cart2hom(self, pts_3d):
""" Input: nx3 points in Cartesian
Oupput: nx4 points in Homogeneous by pending 1
"""
n = pts_3d.shape[0]
pts_3d_hom = np.hstack((pts_3d, np.ones((n, 1))))
return pts_3d_hom
# ===========================
# ------- 3d to 3d ----------
# ===========================
def project_velo_to_ref(self, pts_3d_velo):
pts_3d_velo = self.cart2hom(pts_3d_velo) # nx4
return np.dot(pts_3d_velo, np.transpose(self.V2C))
def project_ref_to_velo(self, pts_3d_ref):
pts_3d_ref = self.cart2hom(pts_3d_ref) # nx4
return np.dot(pts_3d_ref, np.transpose(self.C2V))
def project_rect_to_ref(self, pts_3d_rect):
""" Input and Output are nx3 points """
return np.transpose(np.dot(np.linalg.inv(self.R0), np.transpose(pts_3d_rect)))
def project_ref_to_rect(self, pts_3d_ref):
""" Input and Output are nx3 points """
return np.transpose(np.dot(self.R0, np.transpose(pts_3d_ref)))
def project_rect_to_velo(self, pts_3d_rect):
""" Input: nx3 points in rect camera coord.
Output: nx3 points in velodyne coord.
"""
pts_3d_ref = self.project_rect_to_ref(pts_3d_rect)
return self.project_ref_to_velo(pts_3d_ref)
def project_velo_to_rect(self, pts_3d_velo):
pts_3d_ref = self.project_velo_to_ref(pts_3d_velo)
return self.project_ref_to_rect(pts_3d_ref)
# ===========================
# ------- 3d to 2d ----------
# ===========================
def project_rect_to_image(self, pts_3d_rect):
""" Input: nx3 points in rect camera coord.
Output: nx2 points in image2 coord.
"""
pts_3d_rect = self.cart2hom(pts_3d_rect)
pts_2d = np.dot(pts_3d_rect, np.transpose(self.P)) # nx3
pts_2d[:, 0] /= pts_2d[:, 2]
pts_2d[:, 1] /= pts_2d[:, 2]
return pts_2d[:, 0:2]
def project_velo_to_image(self, pts_3d_velo):
""" Input: nx3 points in velodyne coord.
Output: nx2 points in image2 coord.
"""
pts_3d_rect = self.project_velo_to_rect(pts_3d_velo)
return self.project_rect_to_image(pts_3d_rect)
def project_8p_to_4p(self, pts_2d):
x0 = np.min(pts_2d[:, 0])
x1 = np.max(pts_2d[:, 0])
y0 = np.min(pts_2d[:, 1])
y1 = np.max(pts_2d[:, 1])
x0 = max(0, x0)
# x1 = min(x1, proj.image_width)
y0 = max(0, y0)
# y1 = min(y1, proj.image_height)
return np.array([x0, y0, x1, y1])
def project_velo_to_4p(self, pts_3d_velo):
""" Input: nx3 points in velodyne coord.
Output: 4 points in image2 coord.
"""
pts_2d_velo = self.project_velo_to_image(pts_3d_velo)
return self.project_8p_to_4p(pts_2d_velo)
# ===========================
# ------- 2d to 3d ----------
# ===========================
def project_image_to_rect(self, uv_depth):
""" Input: nx3 first two channels are uv, 3rd channel
is depth in rect camera coord.
Output: nx3 points in rect camera coord.
"""
n = uv_depth.shape[0]
x = ((uv_depth[:, 0] - self.c_u) * uv_depth[:, 2]) / self.f_u + self.b_x
y = ((uv_depth[:, 1] - self.c_v) * uv_depth[:, 2]) / self.f_v + self.b_y
pts_3d_rect = np.zeros((n, 3))
pts_3d_rect[:, 0] = x
pts_3d_rect[:, 1] = y
pts_3d_rect[:, 2] = uv_depth[:, 2]
return pts_3d_rect
def project_image_to_velo(self, uv_depth):
pts_3d_rect = self.project_image_to_rect(uv_depth)
return self.project_rect_to_velo(pts_3d_rect)
def project_depth_to_velo(self, depth, constraint_box=True):
depth_pt3d = get_depth_pt3d(depth)
depth_UVDepth = np.zeros_like(depth_pt3d)
depth_UVDepth[:, 0] = depth_pt3d[:, 1]
depth_UVDepth[:, 1] = depth_pt3d[:, 0]
depth_UVDepth[:, 2] = depth_pt3d[:, 2]
# print("depth_pt3d:",depth_UVDepth.shape)
depth_pc_velo = self.project_image_to_velo(depth_UVDepth)
# print("dep_pc_velo:",depth_pc_velo.shape)
if constraint_box:
depth_box_fov_inds = (
(depth_pc_velo[:, 0] < cbox[0][1])
& (depth_pc_velo[:, 0] >= cbox[0][0])
& (depth_pc_velo[:, 1] < cbox[1][1])
& (depth_pc_velo[:, 1] >= cbox[1][0])
& (depth_pc_velo[:, 2] < cbox[2][1])
& (depth_pc_velo[:, 2] >= cbox[2][0])
)
depth_pc_velo = depth_pc_velo[depth_box_fov_inds]
return depth_pc_velo
def get_depth_pt3d(depth):
pt3d = []
for i in range(depth.shape[0]):
for j in range(depth.shape[1]):
pt3d.append([i, j, depth[i, j]])
return np.array(pt3d)
def rotx(t):
""" 3D Rotation about the x-axis. """
c = np.cos(t)
s = np.sin(t)
return np.array([[1, 0, 0], [0, c, -s], [0, s, c]])
def roty(t):
""" Rotation about the y-axis. """
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
def rotz(t):
""" Rotation about the z-axis. """
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
def transform_from_rot_trans(R, t):
""" Transforation matrix from rotation matrix and translation vector. """
R = R.reshape(3, 3)
t = t.reshape(3, 1)
return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
def inverse_rigid_trans(Tr):
""" Inverse a rigid body transform matrix (3x4 as [R|t])
[R'|-R't; 0|1]
"""
inv_Tr = np.zeros_like(Tr) # 3x4
inv_Tr[0:3, 0:3] = np.transpose(Tr[0:3, 0:3])
inv_Tr[0:3, 3] = np.dot(-np.transpose(Tr[0:3, 0:3]), Tr[0:3, 3])
return inv_Tr
def read_label(label_filename):
lines = [line.rstrip() for line in open(label_filename)]
objects = [Object3d(line) for line in lines]
return objects
def load_image(img_filename):
return cv2.imread(img_filename)
def load_depth_v(img_filename):
# return cv2.imread(img_filename)
disp_img = cv2.imread(img_filename, cv2.IMREAD_UNCHANGED)
disp_img = disp_img.astype(np.float)
return disp_img / 256.0
def load_depth0(img_filename):
# return cv2.imread(img_filename)
depth_img = np.array(Image.open(img_filename), dtype=int)
depth_img = depth_img.astype(np.float) / 256.0
return depth_img
def load_depth(img_filename):
isexist = True
disp_img = cv2.imread(img_filename, cv2.IMREAD_UNCHANGED)
if disp_img is None:
isexist = False
disp_img = np.zeros((370, 1224))
else:
disp_img = disp_img.astype(np.float)
return disp_img / 256.0, isexist
def load_velo_scan(velo_filename, dtype=np.float32, n_vec=4):
scan = np.fromfile(velo_filename, dtype=dtype)
scan = scan.reshape((-1, n_vec))
return scan
def lidar_to_top_coords(x, y, z=None):
if 0:
return x, y
else:
# print("TOP_X_MAX-TOP_X_MIN:",TOP_X_MAX,TOP_X_MIN)
X0, Xn = 0, int((TOP_X_MAX - TOP_X_MIN) // TOP_X_DIVISION) + 1
Y0, Yn = 0, int((TOP_Y_MAX - TOP_Y_MIN) // TOP_Y_DIVISION) + 1
xx = Yn - int((y - TOP_Y_MIN) // TOP_Y_DIVISION)
yy = Xn - int((x - TOP_X_MIN) // TOP_X_DIVISION)
return xx, yy
def lidar_to_top(lidar):
idx = np.where(lidar[:, 0] > TOP_X_MIN)
lidar = lidar[idx]
idx = np.where(lidar[:, 0] < TOP_X_MAX)
lidar = lidar[idx]
idx = np.where(lidar[:, 1] > TOP_Y_MIN)
lidar = lidar[idx]
idx = np.where(lidar[:, 1] < TOP_Y_MAX)
lidar = lidar[idx]
idx = np.where(lidar[:, 2] > TOP_Z_MIN)
lidar = lidar[idx]
idx = np.where(lidar[:, 2] < TOP_Z_MAX)
lidar = lidar[idx]
pxs = lidar[:, 0]
pys = lidar[:, 1]
pzs = lidar[:, 2]
prs = lidar[:, 3]
qxs = ((pxs - TOP_X_MIN) // TOP_X_DIVISION).astype(np.int32)
qys = ((pys - TOP_Y_MIN) // TOP_Y_DIVISION).astype(np.int32)
# qzs=((pzs-TOP_Z_MIN)//TOP_Z_DIVISION).astype(np.int32)
qzs = (pzs - TOP_Z_MIN) / TOP_Z_DIVISION
quantized = np.dstack((qxs, qys, qzs, prs)).squeeze()
X0, Xn = 0, int((TOP_X_MAX - TOP_X_MIN) // TOP_X_DIVISION) + 1
Y0, Yn = 0, int((TOP_Y_MAX - TOP_Y_MIN) // TOP_Y_DIVISION) + 1
Z0, Zn = 0, int((TOP_Z_MAX - TOP_Z_MIN) / TOP_Z_DIVISION)
height = Xn - X0
width = Yn - Y0
channel = Zn - Z0 + 2
# print('height,width,channel=%d,%d,%d'%(height,width,channel))
top = np.zeros(shape=(height, width, channel), dtype=np.float32)
# histogram = Bin(channel, 0, Zn, "z", Bin(height, 0, Yn, "y", Bin(width, 0, Xn, "x", Maximize("intensity"))))
# histogram.fill.numpy({"x": qxs, "y": qys, "z": qzs, "intensity": prs})
if 1: # new method
for x in range(Xn):
ix = np.where(quantized[:, 0] == x)
quantized_x = quantized[ix]
if len(quantized_x) == 0:
continue
yy = -x
for y in range(Yn):
iy = np.where(quantized_x[:, 1] == y)
quantized_xy = quantized_x[iy]
count = len(quantized_xy)
if count == 0:
continue
xx = -y
top[yy, xx, Zn + 1] = min(1, np.log(count + 1) / math.log(32))
max_height_point = np.argmax(quantized_xy[:, 2])
top[yy, xx, Zn] = quantized_xy[max_height_point, 3]
for z in range(Zn):
iz = np.where(
(quantized_xy[:, 2] >= z) & (quantized_xy[:, 2] <= z + 1)
)
quantized_xyz = quantized_xy[iz]
if len(quantized_xyz) == 0:
continue
zz = z
# height per slice
max_height = max(0, np.max(quantized_xyz[:, 2]) - z)
top[yy, xx, zz] = max_height
# if 0: #unprocess
# top_image = np.zeros((height,width,3),dtype=np.float32)
#
# num = len(lidar)
# for n in range(num):
# x,y = qxs[n],qys[n]
# if x>=0 and x <width and y>0 and y<height:
# top_image[y,x,:] += 1
#
# max_value=np.max(np.log(top_image+0.001))
# top_image = top_image/max_value *255
# top_image=top_image.astype(dtype=np.uint8)
return top
MATRIX_Mt = np.array(
[
[2.34773698e-04, 1.04494074e-02, 9.99945389e-01, 0.00000000e00],
[-9.99944155e-01, 1.05653536e-02, 1.24365378e-04, 0.00000000e00],
[-1.05634778e-02, -9.99889574e-01, 1.04513030e-02, 0.00000000e00],
[5.93721868e-02, -7.51087914e-02, -2.72132796e-01, 1.00000000e00],
]
)
MATRIX_Kt = np.array(
[[721.5377, 0.0, 0.0], [0.0, 721.5377, 0.0], [609.5593, 172.854, 1.0]]
)
def box3d_to_rgb_box00(box3d):
# box3d = boxes3d[n]
Ps = np.hstack((box3d, np.ones((8, 1))))
Qs = np.matmul(Ps, MATRIX_Mt)
Qs = Qs[:, 0:3]
qs = np.matmul(Qs, MATRIX_Kt)
zs = qs[:, 2].reshape(8, 1)
qs = qs / zs
return qs[:, 0:2]
def box3d_to_rgb_box0000(boxes3d, Mt=None, Kt=None):
# if (cfg.DATA_SETS_TYPE == 'kitti'):
if Mt is None:
Mt = np.array(MATRIX_Mt)
if Kt is None:
Kt = np.array(MATRIX_Kt)
num = len(boxes3d)
projections = np.zeros((num, 8, 2), dtype=np.int32)
for n in range(num):
box3d = boxes3d[n]
Ps = np.hstack((box3d, np.ones((8, 1))))
Qs = np.matmul(Ps, Mt)
Qs = Qs[:, 0:3]
qs = np.matmul(Qs, Kt)
zs = qs[:, 2].reshape(8, 1)
qs = qs / zs
# pts_3d=project_to_image(qs[:,0:2], P)
projections[n] = qs[:, 0:2]
# projections[n] = proj3d_to_2d(qs[:,0:2])
# projections[n] = pts_3d
return projections
def proj3d_to_2d(rgbpoint):
x0 = np.min(rgbpoint[:, 0])
x1 = np.max(rgbpoint[:, 0])
y0 = np.min(rgbpoint[:, 1])
y1 = np.max(rgbpoint[:, 1])
# x0 = max(0,x0)
# x1 = min(x1, proj.image_width)
# y0 = max(0,y0)
# y1 = min(y1, proj.image_height)
return np.array([x0, y0, x1, y1])
def project_to_image(pts_3d, P):
""" Project 3d points to image plane.
Usage: pts_2d = projectToImage(pts_3d, P)
input: pts_3d: nx3 matrix
P: 3x4 projection matrix
output: pts_2d: nx2 matrix
P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
=> normalize projected_pts_2d(2xn)
<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
=> normalize projected_pts_2d(nx2)
"""
n = pts_3d.shape[0]
pts_3d_extend = np.hstack((pts_3d, np.ones((n, 1))))
# print(('pts_3d_extend shape: ', pts_3d_extend.shape))
pts_2d = np.dot(pts_3d_extend, np.transpose(P)) # nx3
pts_2d[:, 0] /= pts_2d[:, 2]
pts_2d[:, 1] /= pts_2d[:, 2]
return pts_2d[:, 0:2]
def compute_box_3d(obj, P):
""" Takes an object and a projection matrix (P) and projects the 3d
bounding box into the image plane.
Returns:
corners_2d: (8,2) array in left image coord.
corners_3d: (8,3) array in in rect camera coord.
"""
# compute rotational matrix around yaw axis
R = roty(obj.ry)
# 3d bounding box dimensions
l = obj.l
w = obj.w
h = obj.h
# 3d bounding box corners
x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2]
y_corners = [0, 0, 0, 0, -h, -h, -h, -h]
z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2]
# rotate and translate 3d bounding box
corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners]))
# print corners_3d.shape
corners_3d[0, :] = corners_3d[0, :] + obj.t[0]
corners_3d[1, :] = corners_3d[1, :] + obj.t[1]
corners_3d[2, :] = corners_3d[2, :] + obj.t[2]
# print 'cornsers_3d: ', corners_3d
# only draw 3d bounding box for objs in front of the camera
if np.any(corners_3d[2, :] < 0.1):
corners_2d = None
return corners_2d, np.transpose(corners_3d)
# project the 3d bounding box into the image plane
corners_2d = project_to_image(np.transpose(corners_3d), P)
# print 'corners_2d: ', corners_2d
return corners_2d, np.transpose(corners_3d)
def compute_orientation_3d(obj, P):
""" Takes an object and a projection matrix (P) and projects the 3d
object orientation vector into the image plane.
Returns:
orientation_2d: (2,2) array in left image coord.
orientation_3d: (2,3) array in in rect camera coord.
"""
# compute rotational matrix around yaw axis
R = roty(obj.ry)
# orientation in object coordinate system
orientation_3d = np.array([[0.0, obj.l], [0, 0], [0, 0]])
# rotate and translate in camera coordinate system, project in image
orientation_3d = np.dot(R, orientation_3d)
orientation_3d[0, :] = orientation_3d[0, :] + obj.t[0]
orientation_3d[1, :] = orientation_3d[1, :] + obj.t[1]
orientation_3d[2, :] = orientation_3d[2, :] + obj.t[2]
# vector behind image plane?
if np.any(orientation_3d[2, :] < 0.1):
orientation_2d = None
return orientation_2d, np.transpose(orientation_3d)
# project orientation into the image plane
orientation_2d = project_to_image(np.transpose(orientation_3d), P)
return orientation_2d, np.transpose(orientation_3d)
def draw_projected_box3d(image, qs, color=(0, 255, 0), thickness=2):
""" Draw 3d bounding box in image
qs: (8,3) array of vertices for the 3d box in following order:
1 -------- 0
/| /|
2 -------- 3 .
| | | |
. 5 -------- 4
|/ |/
6 -------- 7
"""
qs = qs.astype(np.int32)
for k in range(0, 4):
# Ref: http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
i, j = k, (k + 1) % 4
# use LINE_AA for opencv3
# cv2.line(image, (qs[i,0],qs[i,1]), (qs[j,0],qs[j,1]), color, thickness, cv2.CV_AA)
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)
i, j = k + 4, (k + 1) % 4 + 4
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)
i, j = k, k + 4
cv2.line(image, (qs[i, 0], qs[i, 1]), (qs[j, 0], qs[j, 1]), color, thickness)
return image
def draw_top_image(lidar_top):
top_image = np.sum(lidar_top, axis=2)
top_image = top_image - np.min(top_image)
divisor = np.max(top_image) - np.min(top_image)
top_image = top_image / divisor * 255
top_image = np.dstack((top_image, top_image, top_image)).astype(np.uint8)
return top_image
def draw_box3d_on_top(
image,
boxes3d,
color=(255, 255, 255),
thickness=1,
scores=None,
text_lables=[],
is_gt=False,
):
# if scores is not None and scores.shape[0] >0:
# print(scores.shape)
# scores=scores[:,0]
font = cv2.FONT_HERSHEY_SIMPLEX
img = image.copy()
num = len(boxes3d)
startx = 5
for n in range(num):
b = boxes3d[n]
x0 = b[0, 0]
y0 = b[0, 1]
x1 = b[1, 0]
y1 = b[1, 1]
x2 = b[2, 0]
y2 = b[2, 1]
x3 = b[3, 0]
y3 = b[3, 1]
u0, v0 = lidar_to_top_coords(x0, y0)
u1, v1 = lidar_to_top_coords(x1, y1)
u2, v2 = lidar_to_top_coords(x2, y2)
u3, v3 = lidar_to_top_coords(x3, y3)
if is_gt:
color = (0, 255, 0)
startx = 5
else:
color = heat_map_rgb(0.0, 1.0, scores[n]) if scores is not None else 255
startx = 85
cv2.line(img, (u0, v0), (u1, v1), color, thickness, cv2.LINE_AA)
cv2.line(img, (u1, v1), (u2, v2), color, thickness, cv2.LINE_AA)
cv2.line(img, (u2, v2), (u3, v3), color, thickness, cv2.LINE_AA)
cv2.line(img, (u3, v3), (u0, v0), color, thickness, cv2.LINE_AA)
for n in range(len(text_lables)):
text_pos = (startx, 25 * (n + 1))
cv2.putText(img, text_lables[n], text_pos, font, 0.5, color, 0, cv2.LINE_AA)
return img
# hypothesis function
def hypothesis_func(w, x):
w1, w0 = w
return w1 * x + w0
# error function
def error_func(w, train_x, train_y):
return hypothesis_func(w, train_x) - train_y
def dump_fit_func(w_fit):
w1, w0 = w_fit
print("fitting line=", str(w1) + "*x + " + str(w0))
return
# square error
def dump_fit_cost(w_fit, train_x, train_y):
error = error_func(w_fit, train_x, train_y)
square_error = sum(e * e for e in error)
print("fitting cost:", str(square_error))
return square_error
def linear_regression(train_x, train_y, test_x):
# train set
# train_x = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78])
# train_y = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05])
# linear regression by leastsq
# msg = "invoke scipy leastsq"
w_init = [20, 1] # weight factor init
fit_ret = leastsq(error_func, w_init, args=(train_x, train_y))
w_fit = fit_ret[0]
# dump fit result
dump_fit_func(w_fit)
fit_cost = dump_fit_cost(w_fit, train_x, train_y)
# test set
# test_x = np.array(np.arange(train_x.min(), train_x.max(), 1.0))
test_y = hypothesis_func(w_fit, test_x)
test_y0 = hypothesis_func(w_fit, train_x)
return test_y, test_y0