Skip to content

Commit

Permalink
Fixed seealso sections
Browse files Browse the repository at this point in the history
  • Loading branch information
flying-sheep committed Jul 25, 2019
1 parent 7716bfd commit db6101c
Show file tree
Hide file tree
Showing 3 changed files with 26 additions and 15 deletions.
1 change: 1 addition & 0 deletions scanpy/plotting/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
pl.scatter
pl.heatmap
pl.dotplot
pl.tracksplot
pl.violin
pl.stacked_violin
pl.matrixplot
Expand Down
38 changes: 23 additions & 15 deletions scanpy/plotting/_anndata.py
Original file line number Diff line number Diff line change
Expand Up @@ -779,9 +779,6 @@ def stacked_violin(adata, var_names, groupby=None, log=False, use_raw=None, num_
Wraps `seaborn.violinplot` for :class:`~anndata.AnnData`.
See also :func:`~scanpy.pl.rank_genes_groups_stacked_violin` to plot marker genes
identified using the :func:`~scanpy.tl.rank_genes_groups` function.
Parameters
----------
{common_plot_args}
Expand Down Expand Up @@ -827,8 +824,13 @@ def stacked_violin(adata, var_names, groupby=None, log=False, use_raw=None, num_
... groupby='bulk_labels', dendrogram=True)
Using var_names as dict:
>>> markers = {{'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}}
>>> sc.pl.stacked_violin(adata, markers, groupby='bulk_labels', dendrogram=True)
See also
--------
rank_genes_groups_stacked_violin: to plot marker genes identified using the :func:`~scanpy.tl.rank_genes_groups` function.
"""
import seaborn as sns # Slow import, only import if called
if use_raw is None and adata.raw is not None: use_raw = True
Expand Down Expand Up @@ -1094,9 +1096,6 @@ def heatmap(adata, var_names, groupby=None, use_raw=None, log=False, num_categor
annotation is turned into a categorical by binning the data into the number
specified in `num_categories`.
See also :func:`~scanpy.pl.rank_genes_groups_heatmap` to plot marker genes
identified using the :func:`~scanpy.tl.rank_genes_groups` function.
Parameters
----------
{common_plot_args}
Expand All @@ -1123,9 +1122,13 @@ def heatmap(adata, var_names, groupby=None, use_raw=None, log=False, num_categor
... groupby='bulk_labels', dendrogram=True, swap_axes=True)
Using var_names as dict:
>>> markers = {{'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}}
>>> sc.pl.heatmap(adata, markers, groupby='bulk_labels', dendrogram=True)
See also
--------
rank_genes_groups_heatmap: to plot marker genes identified using the :func:`~scanpy.tl.rank_genes_groups` function.
"""
if use_raw is None and adata.raw is not None: use_raw = True

Expand Down Expand Up @@ -1370,9 +1373,6 @@ def dotplot(adata, var_names, groupby=None, use_raw=None, log=False, num_categor
An example of dotplot usage is to visualize, for multiple marker genes,
the mean value and the percentage of cells expressing the gene accross multiple clusters.
See also :func:`~scanpy.pl.rank_genes_groups_dotplot` to plot marker genes
identified using the :func:`~scanpy.tl.rank_genes_groups` function.
Parameters
----------
{common_plot_args}
Expand Down Expand Up @@ -1414,8 +1414,13 @@ def dotplot(adata, var_names, groupby=None, use_raw=None, log=False, num_categor
... groupby='bulk_labels', dendrogram=True)
Using var_names as dict:
>>> markers = {{'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}}
>>> sc.pl.dotplot(adata, markers, groupby='bulk_labels', dendrogram=True)
See also
--------
rank_genes_groups_dotplot: to plot marker genes identified using the :func:`~scanpy.tl.rank_genes_groups` function.
"""
if use_raw is None and adata.raw is not None: use_raw = True
var_names, var_group_labels, var_group_positions = _check_var_names_type(var_names,
Expand Down Expand Up @@ -1669,9 +1674,6 @@ def matrixplot(adata, var_names, groupby=None, use_raw=None, log=False, num_cate
If groupby is not given, the matrixplot assumes that all data belongs to a single
category.
See also :func:`~scanpy.pl.rank_genes_groups_matrixplot` to plot marker genes
identified using the :func:`~scanpy.tl.rank_genes_groups` function.
Parameters
----------
{common_plot_args}
Expand All @@ -1693,9 +1695,13 @@ def matrixplot(adata, var_names, groupby=None, use_raw=None, log=False, num_cate
... groupby='bulk_labels', dendrogram=True)
Using var_names as dict:
>>> markers = {{'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}}
>>> sc.pl.matrixplot(adata, markers, groupby='bulk_labels', dendrogram=True)
See also
--------
rank_genes_groups_matrixplot: to plot marker genes identified using the :func:`~scanpy.tl.rank_genes_groups` function.
"""

if use_raw is None and adata.raw is not None: use_raw = True
Expand Down Expand Up @@ -1879,9 +1885,6 @@ def tracksplot(adata, var_names, groupby, use_raw=None, log=False,
`groupby` is required to sort and order the values using the respective group
and should be a categorical value.
See also :func:`~scanpy.pl.rank_genes_groups_tracksplot` to plot marker genes
identified using the :func:`~scanpy.tl.rank_genes_groups` function.
Parameters
----------
{common_plot_args}
Expand All @@ -1900,8 +1903,13 @@ def tracksplot(adata, var_names, groupby, use_raw=None, log=False,
... 'bulk_labels', dendrogram=True)
Using var_names as dict:
>>> markers = {{'T-cell': 'CD3D', 'B-cell': 'CD79A', 'myeloid': 'CST3'}}
>>> sc.pl.heatmap(adata, markers, groupby='bulk_labels', dendrogram=True)
See also
--------
rank_genes_groups_tracksplot: to plot marker genes identified using the :func:`~scanpy.tl.rank_genes_groups` function.
"""

if groupby not in adata.obs_keys() or adata.obs[groupby].dtype.name != 'category':
Expand Down
2 changes: 2 additions & 0 deletions scanpy/plotting/_tools/paga.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,6 +377,8 @@ def paga(
mirrors coordinates along the x axis... that is, you should increase the
`maxiter` parameter by 1 if the layout is flipped.
.. currentmodule:: scanpy
See also
--------
tl.paga
Expand Down

0 comments on commit db6101c

Please sign in to comment.