Skip to content

Commit

Permalink
Sample implementation of ECDHE.
Browse files Browse the repository at this point in the history
  • Loading branch information
andreacorbellini committed May 30, 2015
1 parent c0937d2 commit f7fb45d
Showing 1 changed file with 181 additions and 0 deletions.
181 changes: 181 additions & 0 deletions scripts/ecdhe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
#!/usr/bin/env python3

import collections
import random

EllipticCurve = collections.namedtuple('EllipticCurve', 'name p a b g n h')

curve = EllipticCurve(
'secp256k1',
# Field characteristic.
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
# Curve coefficients.
a=0,
b=7,
# Base point.
g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
# Subgroup order.
n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
# Subgroup cofactor.
h=1,
)


# Modular arithmetic ##########################################################

def inverse_mod(k, p):
"""Returns the inverse of k modulo p.
This function returns the only integer x such that (x * k) % p == 1.
k must be non-zero and p must be a prime.
"""
if k == 0:
raise ZeroDivisionError('division by zero')

if k < 0:
# k ** -1 = p - (-k) ** -1 (mod p)
return p - inverse_mod(-k, p)

# Extended Euclidean algorithm.
s, old_s = 0, 1
t, old_t = 1, 0
r, old_r = p, k

while r != 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
old_t, t = t, old_s - quotient * t

gcd, x, y = old_r, old_s, old_t

assert gcd == 1
assert (k * x) % p == 1

return x % p


# Functions that work on curve points #########################################

def is_on_curve(point):
"""Returns True if the given point lies on the elliptic curve."""
if point is None:
# None represents the point at infinity.
return True

x, y = point

return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0


def point_neg(point):
"""Returns -point."""
assert is_on_curve(point)

if point is None:
# -0 = 0
return None

x, y = point
result = (x, -y % curve.p)

assert is_on_curve(result)

return result


def point_add(point1, point2):
"""Returns the result of point1 + point2 according to the group law."""
assert is_on_curve(point1)
assert is_on_curve(point2)

if point1 is None:
# 0 + point2 = point2
return point2
if point2 is None:
# point1 + 0 = point1
return point1

x1, y1 = point1
x2, y2 = point2

if x1 == x2 and y1 != y2:
# point1 + (-point1) = 0
return None

if x1 == x2:
# This is the case point1 == point2.
m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
else:
# This is the case point1 != point2.
m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)

x3 = m * m - x1 - x2
y3 = y1 + m * (x3 - x1)
result = (x3 % curve.p,
-y3 % curve.p)

assert is_on_curve(result)

return result


def scalar_mult(k, point):
"""Returns k * point computed using the double and point_add algorithm."""
assert is_on_curve(point)

if k % curve.p == 0 or point is None:
return None

if k < 0:
# k * point = -k * (-point)
return scalar_mult(-k, point_neg(point))

result = None
addend = point

while k:
if k & 1:
# Add.
result = point_add(result, addend)

# Double.
addend = point_add(addend, addend)

k >>= 1

assert is_on_curve(result)

return result


# Keypair generation and ECDHE ################################################

def make_keypair():
"""Generates a random private-public key pair."""
private_key = random.randrange(1, curve.n)
public_key = scalar_mult(private_key, curve.g)

return private_key, public_key


print('Curve:', curve.name)

# Alice generates her own keypair.
alice_private_key, alice_public_key = make_keypair()
print("Alice's private key:", hex(alice_private_key))
print("Alice's public key: (0x{:x}, 0x{:x})".format(*alice_public_key))

# Bob generates his own key pair.
bob_private_key, bob_public_key = make_keypair()
print("Bob's private key:", hex(bob_private_key))
print("Bob's public key: (0x{:x}, 0x{:x})".format(*bob_public_key))

# Alice and Bob exchange their public keys and calculate the shared secret.
s1 = scalar_mult(alice_private_key, bob_public_key)
s2 = scalar_mult(bob_private_key, alice_public_key)
assert s1 == s2

print('Shared secret: (0x{:x}, 0x{:x})'.format(*s1))

0 comments on commit f7fb45d

Please sign in to comment.