NTIRE 2023 Video Colorization Challenge @ CVPR 2023
Please visit test_NTIRE23_Track_1_FID.py to evaluate our model.
We provide the colorized images HERE, and the reference images used to obtain the results HERE.
-
PyTorch >= 1.8.0
-
CUDA >= 10.2
-
Other required packages
# git clone this repository git clone https://github.com/yyang181/NTIRE23-VIDEO-COLORIZATION.git cd NTIRE23-VIDEO-COLORIZATION
cd BiSTNet-NTIRE2023
# create a new anaconda env
conda create -n bistnet python=3.6
conda activate bistnet
# install pytortch
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
# mmcv install
pip install -U openmim
mim install mmcv-full
# install mmediting
git clone https://github.com/open-mmlab/mmediting.git
cd mmediting
pip3 install -e .
# install other pip pkgs
cd .. && pip install -r pip_requirements.txt
Name | URL | Script | FID | CDC |
---|---|---|---|---|
BiSTNet | model | test_NTIRE23_Track_1_FID.py | 21.5372 | 0.001717 |
- Download Pre-trained Models: download a pretrained colorization model from the tabulated links, and put it into the folder
./BiSTNet-NTIRE2023/
, like./BiSTNet-NTIRE2023/checkpoints
,./BiSTNet-NTIRE2023/data
and./BiSTNet-NTIRE2023/models/protoseg_core/checkpoints
. - Prepare Testing Data: You can put the testing images in a folder, like
./demo_dataset
.demo_dataset/input
: the directory of input grayscale images.demo_dataset/ref
: the directory of reference images (onlyf001.png, f050.png and f100.png
are colorful images).demo_dataset/output
: the directory to save the colorization results.
- Test on Images:
conda activate bistnet && cd BiSTNet-NTIRE2023
CUDA_VISIBLE_DEVICES=0 python test_NTIRE23_Track_1_FID.py
For more details please refer to test_NTIRE23_Track_1_FID.py.
Part of our codes are taken from DeepExemplar, RAFT, HED and ProtoSeg. Thanks for their awesome works.