forked from vipstone/faceai
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
#coding=utf-8 | ||
import cv2 | ||
import numpy | ||
import dlib | ||
|
||
modelPath = "C:\Python36\Lib\site-packages\dlib-data\shape_predictor_68_face_landmarks.dat" | ||
SCALE_FACTOR = 1 | ||
FEATHER_AMOUNT = 11 | ||
|
||
FACE_POINTS = list(range(17, 68)) | ||
MOUTH_POINTS = list(range(48, 61)) | ||
RIGHT_BROW_POINTS = list(range(17, 22)) | ||
LEFT_BROW_POINTS = list(range(22, 27)) | ||
RIGHT_EYE_POINTS = list(range(36, 42)) | ||
LEFT_EYE_POINTS = list(range(42, 48)) | ||
NOSE_POINTS = list(range(27, 35)) | ||
JAW_POINTS = list(range(0, 17)) | ||
|
||
ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS + | ||
RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS) | ||
|
||
OVERLAY_POINTS = [ | ||
LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS, | ||
NOSE_POINTS + MOUTH_POINTS, | ||
] | ||
|
||
COLOUR_CORRECT_BLUR_FRAC = 0.6 | ||
|
||
detector = dlib.get_frontal_face_detector() | ||
predictor = dlib.shape_predictor(modelPath) | ||
|
||
|
||
class TooManyFaces(Exception): | ||
pass | ||
|
||
|
||
class NoFaces(Exception): | ||
pass | ||
|
||
|
||
def get_landmarks(im): | ||
rects = detector(im, 1) | ||
|
||
if len(rects) > 1: | ||
raise TooManyFaces | ||
if len(rects) == 0: | ||
raise NoFaces | ||
|
||
return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()]) | ||
|
||
|
||
def annotate_landmarks(im, landmarks): | ||
im = im.copy() | ||
for idx, point in enumerate(landmarks): | ||
pos = (point[0, 0], point[0, 1]) | ||
cv2.putText( | ||
im, | ||
str(idx), | ||
pos, | ||
fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, | ||
fontScale=0.4, | ||
color=(0, 0, 255)) | ||
cv2.circle(im, pos, 3, color=(0, 255, 255)) | ||
return im | ||
|
||
|
||
def draw_convex_hull(im, points, color): | ||
points = cv2.convexHull(points) | ||
cv2.fillConvexPoly(im, points, color=color) | ||
|
||
|
||
def get_face_mask(im, landmarks): | ||
im = numpy.zeros(im.shape[:2], dtype=numpy.float64) | ||
|
||
for group in OVERLAY_POINTS: | ||
draw_convex_hull(im, landmarks[group], color=1) | ||
|
||
im = numpy.array([im, im, im]).transpose((1, 2, 0)) | ||
|
||
im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0 | ||
im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) | ||
|
||
return im | ||
|
||
|
||
def transformation_from_points(points1, points2): | ||
points1 = points1.astype(numpy.float64) | ||
points2 = points2.astype(numpy.float64) | ||
c1 = numpy.mean(points1, axis=0) | ||
c2 = numpy.mean(points2, axis=0) | ||
points1 -= c1 | ||
points2 -= c2 | ||
s1 = numpy.std(points1) | ||
s2 = numpy.std(points2) | ||
points1 /= s1 | ||
points2 /= s2 | ||
U, S, Vt = numpy.linalg.svd(points1.T * points2) | ||
R = (U * Vt).T | ||
return numpy.vstack([ | ||
numpy.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), | ||
numpy.matrix([0., 0., 1.]) | ||
]) | ||
|
||
|
||
def read_im_and_landmarks(fname): | ||
im = cv2.imread(fname, cv2.IMREAD_COLOR) | ||
im = cv2.resize(im, | ||
(im.shape[1] * SCALE_FACTOR, im.shape[0] * SCALE_FACTOR)) | ||
s = get_landmarks(im) | ||
|
||
return im, s | ||
|
||
|
||
def warp_im(im, M, dshape): | ||
output_im = numpy.zeros(dshape, dtype=im.dtype) | ||
cv2.warpAffine( | ||
im, | ||
M[:2], (dshape[1], dshape[0]), | ||
dst=output_im, | ||
borderMode=cv2.BORDER_TRANSPARENT, | ||
flags=cv2.WARP_INVERSE_MAP) | ||
return output_im | ||
|
||
|
||
def correct_colours(im1, im2, landmarks1): | ||
blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm( | ||
numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - | ||
numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) | ||
blur_amount = int(blur_amount) | ||
if blur_amount % 2 == 0: | ||
blur_amount += 1 | ||
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) | ||
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) | ||
|
||
im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype) | ||
|
||
return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / | ||
im2_blur.astype(numpy.float64)) | ||
|
||
|
||
im1, landmarks1 = read_im_and_landmarks("img/ag-2.png") | ||
im2, landmarks2 = read_im_and_landmarks("img/ag.png") | ||
|
||
M = transformation_from_points(landmarks1[ALIGN_POINTS], | ||
landmarks2[ALIGN_POINTS]) | ||
|
||
mask = get_face_mask(im2, landmarks2) | ||
warped_mask = warp_im(mask, M, im1.shape) | ||
combined_mask = numpy.max( | ||
[get_face_mask(im1, landmarks1), warped_mask], axis=0) | ||
|
||
warped_im2 = warp_im(im2, M, im1.shape) | ||
warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1) | ||
|
||
output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask | ||
|
||
cv2.imwrite("img/faceswap.png", output_im) | ||
|
||
# cv2.waitKey(0) | ||
# cv2.destroyAllWindows() |