Skip to content

Commit

Permalink
[Fix] Avoid Overloading Nonzero for PyTorch Backend (dmlc#2434)
Browse files Browse the repository at this point in the history
* Update gatedgraphconv.py

* Update entity_classify.py

* Update data-process.rst

* Update reading_data.py

* Update data-process.rst

* Update utils.py

* Update knowledge_graph.py

* Update entity_classify.py

* Update rdf.py

* Update entity_classify_mb.py

* Update test_classify.py

* Update tensor.py

* Update sparse.py

* Update entity_classify_mp.py

* Update 6_line_graph.py
  • Loading branch information
mufeili authored Dec 20, 2020
1 parent 5c77b61 commit 492ad9b
Show file tree
Hide file tree
Showing 15 changed files with 30 additions and 30 deletions.
2 changes: 1 addition & 1 deletion docs/source/guide/data-process.rst
Original file line number Diff line number Diff line change
Expand Up @@ -308,7 +308,7 @@ to see the complete code. The following code uses a subclass of ``KnowledgeGraph
# get training mask
train_mask = graph.edata['train_mask']
train_idx = torch.nonzero(train_mask).squeeze()
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
src, dst = graph.edges(train_idx)
# get edge types in training set
rel = graph.edata['etype'][train_idx]
Expand Down
2 changes: 1 addition & 1 deletion docs/source/guide_cn/data-process.rst
Original file line number Diff line number Diff line change
Expand Up @@ -286,7 +286,7 @@ DGL建议使用节点掩码来指定数据集的划分。
# 获取训练集掩码
train_mask = graph.edata['train_mask']
train_idx = torch.nonzero(train_mask).squeeze()
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
src, dst = graph.edges(train_idx)
# 获取训练集中的边类型
Expand Down
4 changes: 2 additions & 2 deletions examples/pytorch/ogb/line/reading_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ def make_undirected(G):
return G

def find_connected_nodes(G):
nodes = torch.nonzero(G.out_degrees()).squeeze(-1)
nodes = torch.nonzero(G.out_degrees(), as_tuple=False).squeeze(-1)
return nodes

class LineDataset:
Expand Down Expand Up @@ -209,4 +209,4 @@ def __init__(self, G, seeds):

def sample(self, seeds):
""" seeds torch.LongTensor : a batch of indices of edges """
return self.edges[torch.LongTensor(seeds)]
return self.edges[torch.LongTensor(seeds)]
4 changes: 2 additions & 2 deletions examples/pytorch/rgcn-hetero/entity_classify.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@ def main(args):
num_classes = dataset.num_classes
train_mask = g.nodes[category].data.pop('train_mask')
test_mask = g.nodes[category].data.pop('test_mask')
train_idx = th.nonzero(train_mask).squeeze()
test_idx = th.nonzero(test_mask).squeeze()
train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
labels = g.nodes[category].data.pop('labels')
category_id = len(g.ntypes)
for i, ntype in enumerate(g.ntypes):
Expand Down
4 changes: 2 additions & 2 deletions examples/pytorch/rgcn-hetero/entity_classify_mb.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,8 @@ def main(args):
num_classes = dataset.num_classes
train_mask = g.nodes[category].data.pop('train_mask')
test_mask = g.nodes[category].data.pop('test_mask')
train_idx = th.nonzero(train_mask).squeeze()
test_idx = th.nonzero(test_mask).squeeze()
train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
labels = g.nodes[category].data.pop('labels')

# split dataset into train, validate, test
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/rgcn-hetero/test_classify.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def main(args):
category = dataset.predict_category
num_classes = dataset.num_classes
test_mask = g.nodes[category].data.pop('test_mask')
test_idx = th.nonzero(test_mask).squeeze()
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
labels = g.nodes[category].data.pop('labels')

# check cuda
Expand Down
4 changes: 2 additions & 2 deletions examples/pytorch/rgcn/entity_classify.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,8 +63,8 @@ def main(args):
num_classes = dataset.num_classes
train_mask = hg.nodes[category].data.pop('train_mask')
test_mask = hg.nodes[category].data.pop('test_mask')
train_idx = torch.nonzero(train_mask).squeeze()
test_idx = torch.nonzero(test_mask).squeeze()
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze()
labels = hg.nodes[category].data.pop('labels')

# split dataset into train, validate, test
Expand Down
4 changes: 2 additions & 2 deletions examples/pytorch/rgcn/entity_classify_mp.py
Original file line number Diff line number Diff line change
Expand Up @@ -453,8 +453,8 @@ def main(args, devices):
train_mask = hg.nodes[category].data.pop('train_mask')
test_mask = hg.nodes[category].data.pop('test_mask')
labels = hg.nodes[category].data.pop('labels')
train_idx = th.nonzero(train_mask).squeeze()
test_idx = th.nonzero(test_mask).squeeze()
train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
node_feats = [None] * num_of_ntype

# AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
Expand Down
2 changes: 1 addition & 1 deletion examples/pytorch/rgcn/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ def negative_sampling(pos_samples, num_entity, negative_rate):

def sort_and_rank(score, target):
_, indices = torch.sort(score, dim=1, descending=True)
indices = torch.nonzero(indices == target.view(-1, 1))
indices = torch.nonzero(indices == target.view(-1, 1), as_tuple=False)
indices = indices[:, 1].view(-1)
return indices

Expand Down
2 changes: 1 addition & 1 deletion python/dgl/backend/pytorch/sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def _reduce_grad(grad, shape):
num_to_squeeze = len(grad_shape) - len(in_shape)
# pad inshape
in_shape = (1,) * num_to_squeeze + in_shape
reduce_idx = th.nonzero(th.tensor(grad_shape) - th.tensor(in_shape))
reduce_idx = th.nonzero(th.tensor(grad_shape) - th.tensor(in_shape), as_tuple=False)
reduce_idx += 1 # skip batch dim
if len(reduce_idx) > 0:
grad = grad.sum(dim=tuple(reduce_idx), keepdim=True)
Expand Down
2 changes: 1 addition & 1 deletion python/dgl/backend/pytorch/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -498,7 +498,7 @@ def _reduce_grad(grad, shape):
num_to_squeeze = len(grad_shape) - len(in_shape)
# pad inshape
in_shape = (1,) * num_to_squeeze + in_shape
reduce_idx = th.nonzero(th.tensor(grad_shape) - th.tensor(in_shape))
reduce_idx = th.nonzero(th.tensor(grad_shape) - th.tensor(in_shape), as_tuple=False)
reduce_idx += 1 # skip batch dim
grad = grad.sum(dim=tuple(reduce_idx), keepdim=True)
return grad.view(shape)
Expand Down
18 changes: 9 additions & 9 deletions python/dgl/data/knowledge_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -342,7 +342,7 @@ class FB15k237Dataset(KnowledgeGraphDataset):
>>> dataset = FB15k237Dataset()
>>> graph = dataset[0]
>>> train_mask = graph.edata['train_mask']
>>> train_idx = th.nonzero(train_mask).squeeze()
>>> train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(train_idx)
>>> rel = graph.edata['etype'][train_idx]
Expand All @@ -351,7 +351,7 @@ class FB15k237Dataset(KnowledgeGraphDataset):
>>> dataset = FB15k237Dataset()
>>> graph = dataset[0]
>>> val_mask = graph.edata['val_mask']
>>> val_idx = th.nonzero(val_mask).squeeze()
>>> val_idx = th.nonzero(val_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(val_idx)
>>> rel = graph.edata['etype'][val_idx]
Expand All @@ -360,7 +360,7 @@ class FB15k237Dataset(KnowledgeGraphDataset):
>>> dataset = FB15k237Dataset()
>>> graph = dataset[0]
>>> test_mask = graph.edata['test_mask']
>>> test_idx = th.nonzero(test_mask).squeeze()
>>> test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(test_idx)
>>> rel = graph.edata['etype'][test_idx]
Expand Down Expand Up @@ -476,7 +476,7 @@ class FB15kDataset(KnowledgeGraphDataset):
>>> dataset = FB15kDataset()
>>> graph = dataset[0]
>>> train_mask = graph.edata['train_mask']
>>> train_idx = th.nonzero(train_mask).squeeze()
>>> train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(train_idx)
>>> rel = graph.edata['etype'][train_idx]
Expand All @@ -485,7 +485,7 @@ class FB15kDataset(KnowledgeGraphDataset):
>>> dataset = FB15kDataset()
>>> graph = dataset[0]
>>> val_mask = graph.edata['val_mask']
>>> val_idx = th.nonzero(val_mask).squeeze()
>>> val_idx = th.nonzero(val_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(val_idx)
>>> rel = graph.edata['etype'][val_idx]
Expand All @@ -494,7 +494,7 @@ class FB15kDataset(KnowledgeGraphDataset):
>>> dataset = FB15kDataset()
>>> graph = dataset[0]
>>> test_mask = graph.edata['test_mask']
>>> test_idx = th.nonzero(test_mask).squeeze()
>>> test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(test_idx)
>>> rel = graph.edata['etype'][test_idx]
Expand Down Expand Up @@ -613,7 +613,7 @@ class WN18Dataset(KnowledgeGraphDataset):
>>> dataset = WN18Dataset()
>>> graph = dataset[0]
>>> train_mask = graph.edata['train_mask']
>>> train_idx = th.nonzero(train_mask).squeeze()
>>> train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(train_idx)
>>> rel = graph.edata['etype'][train_idx]
Expand All @@ -622,7 +622,7 @@ class WN18Dataset(KnowledgeGraphDataset):
>>> dataset = WN18Dataset()
>>> graph = dataset[0]
>>> val_mask = graph.edata['val_mask']
>>> val_idx = th.nonzero(val_mask).squeeze()
>>> val_idx = th.nonzero(val_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(val_idx)
>>> rel = graph.edata['etype'][val_idx]
Expand All @@ -631,7 +631,7 @@ class WN18Dataset(KnowledgeGraphDataset):
>>> dataset = WN18Dataset()
>>> graph = dataset[0]
>>> test_mask = graph.edata['test_mask']
>>> test_idx = th.nonzero(test_mask).squeeze()
>>> test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
>>> src, dst = graph.edges(test_idx)
>>> rel = graph.edata['etype'][test_idx]
Expand Down
4 changes: 2 additions & 2 deletions python/dgl/data/rdf.py
Original file line number Diff line number Diff line change
Expand Up @@ -557,14 +557,14 @@ class AIFBDataset(RDFGraphDataset):
>>> dataset = AIFBDataset()
>>> graph = dataset[0]
>>> train_mask = graph.nodes[dataset.category].data['train_mask']
>>> train_idx = th.nonzero(train_mask).squeeze()
>>> train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
- ``test_idx`` is deprecated, it can be replaced by:
>>> dataset = AIFBDataset()
>>> graph = dataset[0]
>>> test_mask = graph.nodes[dataset.category].data['test_mask']
>>> test_idx = th.nonzero(test_mask).squeeze()
>>> test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
AIFB DataSet is a Semantic Web (RDF) dataset used as a benchmark in
data mining. It records the organizational structure of AIFB at the
Expand Down
2 changes: 1 addition & 1 deletion python/dgl/nn/pytorch/conv/gatedgraphconv.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ def forward(self, graph, feat, etypes):
for _ in range(self._n_steps):
graph.ndata['h'] = feat
for i in range(self._n_etypes):
eids = (etypes == i).nonzero().view(-1).type(graph.idtype)
eids = th.nonzero(etypes == i, as_tuple=False).view(-1).type(graph.idtype)
if len(eids) > 0:
graph.apply_edges(
lambda edges: {'W_e*h': self.linears[i](edges.src['h'])},
Expand Down
4 changes: 2 additions & 2 deletions tutorials/models/1_gnn/6_line_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,12 +92,12 @@
labels = th.tensor(data.labels)

# find all the nodes labeled with class 0
label0_nodes = th.nonzero(labels == 0).squeeze()
label0_nodes = th.nonzero(labels == 0, as_tuple=False).squeeze()
# find all the edges pointing to class 0 nodes
src, _ = G.in_edges(label0_nodes)
src_labels = labels[src]
# find all the edges whose both endpoints are in class 0
intra_src = th.nonzero(src_labels == 0)
intra_src = th.nonzero(src_labels == 0, as_tuple=False)
print('Intra-class edges percent: %.4f' % (len(intra_src) / len(src_labels)))

###########################################################################################
Expand Down

0 comments on commit 492ad9b

Please sign in to comment.