Skip to content

zhangjiaqi/jpmml-evaluator

 
 

Repository files navigation

JPMML-Evaluator Build Status

Java Evaluator API for Predictive Model Markup Language (PMML).

Features

JPMML-Evaluator is de facto the reference implementation of the PMML specification for the Java platform:

  1. Pre-processing of active fields according to the [DataDictionary] (http://www.dmg.org/v4-2-1/DataDictionary.html) and [MiningSchema] (http://www.dmg.org/v4-2-1/MiningSchema.html) elements:
  • Complete data type system
  • Complete operational type system.
  • Treatment of outlier, missing and/or invalid values.
  1. Model evaluation:
  1. Post-processing of target fields according to the [Targets] (http://www.dmg.org/v4-2-1/Targets.html) element:
  • Rescaling and/or casting regression results.
  • Replacing a missing regression result with the default value.
  • Replacing a missing classification result with the map of prior probabilities.
  1. Calculation of auxiliary output fields according to the [Output] (http://www.dmg.org/v4-2-1/Output.html) element:
  • Over 20 different result feature types.

For more information please see the [features.md] (https://github.com/jpmml/jpmml-evaluator/blob/master/features.md) file.

JPMML-Evaluator has been tested with popular open-source PMML producer software:

JPMML-Evaluator is thread safe and can easily deliver over one million scorings per second (on a single quad-core CPU) when working with simpler models.

Installation

JPMML-Evaluator library JAR files (together with accompanying Java source and Javadocs JAR files) are released via [Maven Central Repository] (http://repo1.maven.org/maven2/org/jpmml/). Please join the [JPMML mailing list] (https://groups.google.com/forum/#!forum/jpmml) for release announcements.

The current version is 1.1.12 (23 November, 2014).

<dependency>
	<groupId>org.jpmml</groupId>
	<artifactId>pmml-evaluator</artifactId>
	<version>1.1.12</version>
</dependency>

Usage

A model evaluator class can be instantiated directly when the contents of the PMML document is known:

PMML pmml = ...;

ModelEvaluator<TreeModel> modelEvaluator = new TreeModelEvaluator(pmml);

Otherwise, a PMML manager class should be instantiated first, which will inspect the contents of the PMML document and instantiate the right model evaluator class later:

PMML pmml = ...;

PMMLManager pmmlManager = new PMMLManager(pmml);
 
ModelEvaluator<?> modelEvaluator = (ModelEvaluator<?>)pmmlManager.getModelManager(ModelEvaluatorFactory.getInstance());

Model evaluator classes follow functional programming principles. Model evaluator instances are cheap enough to be created and discarded as needed (eg. not worth the pooling effort).

It is advisable for application code to work against the org.jpmml.evaluator.Evaluator interface:

Evaluator evaluator = (Evaluator)modelEvaluator;

An evaluator instance can be queried for the definition of active (ie. independent), target (ie. primary dependent) and output (ie. secondary dependent) fields:

List<FieldName> activeFields = evaluator.getActiveFields();
List<FieldName> targetFields = evaluator.getTargetFields();
List<FieldName> outputFields = evaluator.getOutputFields();

The PMML scoring operation must be invoked with valid arguments. Otherwise, the behaviour of the model evaluator class is unspecified.

The preparation of field values:

Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();

List<FieldName> activeFields = evaluator.getActiveFields();
for(FieldName activeField : activeFields){
	// The raw (ie. user-supplied) value could be any Java primitive value
	Object rawValue = ...;

	// The raw value is passed through: 1) outlier treatment, 2) missing value treatment, 3) invalid value treatment and 4) type conversion
	FieldValue activeValue = evaluator.prepare(activeField, rawValue);

	arguments.put(activeField, activeValue);
}

The scoring:

Map<FieldName, ?> results = evaluator.evaluate(arguments);

Typically, a model has exactly one target field:

FieldName targetName = evaluator.getTargetField();
Object targetValue = results.get(targetName);

The target value is either a Java primitive value (as a wrapper object) or an instance of org.jpmml.evaluator.Computable:

if(targetValue instanceof Computable){
	Computable computable = (Computable)targetValue;

	Object primitiveValue = computable.getResult();
}

The target value may implement interfaces that descend from interface org.jpmml.evaluator.ResultFeature:

// Test for "entityId" result feature
if(targetValue instanceof HasEntityId){
	HasEntityId hasEntityId = (HasEntityId)targetValue;
	HasEntityRegistry<?> hasEntityRegistry = (HasEntityRegistry<?>)evaluator;
	BiMap<String, ? extends Entity> entities = hasEntityRegistry.getEntityRegistry();
	Entity winner = entities.get(hasEntityId.getEntityId());

	// Test for "probability" result feature
	if(targetValue instanceof HasProbability){
		HasProbability hasProbability = (HasProbability)targetValue;
		Double winnerProbability = hasProbability.getProbability(winner.getId());
	}
}

Example applications

Module pmml-evaluator-example exemplifies the use of the JPMML-Evaluator library.

This module can be built using [Apache Maven] (http://maven.apache.org/):

mvn clean install

The resulting uber-JAR file target/example-1.1-SNAPSHOT.jar contains the following command-line applications:

For example, evaluating model.pmml using data records from input.tsv:

java -cp target/example-1.1-SNAPSHOT.jar org.jpmml.evaluator.CsvEvaluationExample --model model.pmml --input input.tsv --output output.tsv

Documentation

The [Openscoring.io blog] (http://openscoring.io/blog/) contains fully worked out examples about using JPMML-Model and JPMML-Evaluator libraries.

Notable blog posts:

License

JPMML-Evaluator is dual-licensed under the [GNU Affero General Public License (AGPL) version 3.0] (http://www.gnu.org/licenses/agpl-3.0.html) and a commercial license.

Additional information

Please contact [[email protected]] (mailto:[email protected])

About

Java Evaluator API for PMML

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 98.3%
  • R 1.7%