Skip to content

SRGAN (super resolution generative adversarial networks) with WGAN loss function in TensorFlow

License

Notifications You must be signed in to change notification settings

zhangzibang/SRGAN-with-WGAN-Loss-TensorFlow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SRGAN-with-WGAN-Loss-TensorFlow

SRGAN with WGAN loss function in TensorFlow

Introduction

This code mainly address the problem of super resolution, Super Resolution Generative Adversarial Networks

There are four different from the paper:

  1. The loss function, we use WGAN loss, instead of standard GAN loss.
  2. The network architecture, Because of our poor device, in generator, we just use 5 residual block (paper: 16), and in discriminator, we use the standard DCGAN's discriminator.
  3. The training set, device problem again,:cry: we just use a part of ImageNet (ImageNet Val) which just contains 50,000 images.
  4. The max iteration, we just train the model about 100,000 iterations, instead of the paper 600,000.

How to use

  1. Download the dataset ImageNet Val
  2. unzip dataset and put it into the folder 'ImageNet'
├── test
├── save_para
├── results
├── vgg_para
├── ImageNet
     ├── ILSVRC2012_val_00000001.JPEG
     ├── ILSVRC2012_val_00000002.JPEG
     ├── ILSVRC2012_val_00000003.JPEG
     ├── ILSVRC2012_val_00000004.JPEG
     ├── ILSVRC2012_val_00000005.JPEG
     ├── ILSVRC2012_val_00000006.JPEG
     ...
  1. execute the file main.py

Requirements

  • python3.5
  • tensorflow1.4.0
  • pillow
  • numpy
  • scipy
  • skimage

Results

Train procedure WGAN Loss

Down sampled Bicubic (x4) SRGAN (x4)

Reference

[1] Ledig C, Theis L, Huszár F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]//CVPR. 2017, 2(3): 4.

About

SRGAN (super resolution generative adversarial networks) with WGAN loss function in TensorFlow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%