- Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger: https://s2r2-ig.github.io/ https://arxiv.org/abs/2108.09779
- Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? https://arxiv.org/abs/2011.09533
Implemented in Pytorch:
- PPO with the support of asymmetric actor-critic variant
- Support of end-to-end GPU accelerated training pipeline with Isaac Gym and Brax
- Masked actions support
- Multi-agent training, decentralized and centralized critic variants
- Self-play
Implemented in Tensorflow 1.x (not updates now):
- Rainbow DQN
- A2C
- PPO
Clone repo and run:
pip install -e .
Or:
pip install git+https://github.com/Denys88/rl_games.git
NVIDIA Isaac Gym
Download and follow the installation instructions from https://developer.nvidia.com/isaac-gym
Run from python/rlgpu
directory:
Ant
python rlg_train.py --task Ant --headless
python rlg_train.py --task Ant --play --checkpoint nn/Ant.pth --num_envs 100
Humanoid
python rlg_train.py --task Humanoid --headless
python rlg_train.py --task Humanoid --play --checkpoint nn/Humanoid.pth --num_envs 100
Shadow Hand block orientation task
python rlg_train.py --task ShadowHand --headless
python rlg_train.py --task ShadowHand --play --checkpoint nn/ShadowHand.pth --num_envs 100
Atari Pong
python runner.py --train --file rl_games/configs/atari/ppo_pong.yaml
python runner.py --play --file rl_games/configs/atari/ppo_pong.yaml --checkpoint nn/PongNoFrameskip.pth
Brax Ant
python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml
python runner.py --play --file rl_games/configs/atari/ppo_ant.yaml --checkpoint nn/Ant_brax.pth
- Some of the supported envs are not installed with setup.py, you need to manually install them