Skip to content

Latest commit

 

History

History
62 lines (45 loc) · 1.72 KB

README.md

File metadata and controls

62 lines (45 loc) · 1.72 KB

Vieo Action Recognition

This is our project for building the Video Action Recognition.

Dataset deployment

Dataset deployment steps:

  • Make video-action-recognition/data directory.

  • Download HMDB51 to the data directory– About 2GB for a total of 7,000 clips distributed in 51 action classes. Add use unrar x xxx.rar to extract all .rar file in this dataset. Finally, we have an video-action-recognition/data with directory tree structure like this:

    data
    └── HMDB51
        ├── split
        │   ├── README
        │   ├── testTrainMulti_7030_splits
        │   └── test_train_splits.rar
        └── video
            ├── brush_hair
            ├── cartwheel
            ├── catch
            ...
  • Run dataset/dataset_list_maker.py to create annotation list file.

    python dataset/dataset_list_maker.py data/HMDB51/
    
  • At last, video-action-recognition/data directory tree structure will be like this:

    data
    └── HMDB51
        ├── meta.txt
        ├── split
        │   ├── README
        │   ├── testTrainMulti_7030_splits
        │   └── test_train_splits.rar
        ├── test_list.txt
        ├── train_list.txt
        └── video
            ├── brush_hair
            ├── cartwheel
            ├── catch
            ...
    

Model training

Resnet_a models:

  • Go to the current directory:cd xxx/video-action-reconigtion
  • Run tensorboard: bash tensorboard/tensorboard.sh [port]. e.g bash tensorboard/tensorboard.sh 7788
  • Start training with bash experiments/scripts/train_resnet_a.sh