Skip to content

Video action recognition model based in deep neural network.

Notifications You must be signed in to change notification settings

zhanzy178/video-action-recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vieo Action Recognition

This is our project for building the Video Action Recognition.

Dataset deployment

Dataset deployment steps:

  • Make video-action-recognition/data directory.

  • Download HMDB51 to the data directory– About 2GB for a total of 7,000 clips distributed in 51 action classes. Add use unrar x xxx.rar to extract all .rar file in this dataset. Finally, we have an video-action-recognition/data with directory tree structure like this:

    data
    └── HMDB51
        ├── split
        │   ├── README
        │   ├── testTrainMulti_7030_splits
        │   └── test_train_splits.rar
        └── video
            ├── brush_hair
            ├── cartwheel
            ├── catch
            ...
  • Run dataset/dataset_list_maker.py to create annotation list file.

    python dataset/dataset_list_maker.py data/HMDB51/
    
  • At last, video-action-recognition/data directory tree structure will be like this:

    data
    └── HMDB51
        ├── meta.txt
        ├── split
        │   ├── README
        │   ├── testTrainMulti_7030_splits
        │   └── test_train_splits.rar
        ├── test_list.txt
        ├── train_list.txt
        └── video
            ├── brush_hair
            ├── cartwheel
            ├── catch
            ...
    

Model training

Resnet_a models:

  • Go to the current directory:cd xxx/video-action-reconigtion
  • Run tensorboard: bash tensorboard/tensorboard.sh [port]. e.g bash tensorboard/tensorboard.sh 7788
  • Start training with bash experiments/scripts/train_resnet_a.sh

About

Video action recognition model based in deep neural network.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published